python_CPU多进程处理

cpu有多个核心,在默认的程序运行中只使用了一个核心,其它的核心处于闲置状态。

可以使用mulltiprocessing模块以多进程处理程序。

通常有两种方式:

#使用进程池pool
import multiprocessing as mp
def multicpu():
    print(mp.cpu_count())
    pool = mp.Pool()
    re = pool.map(job, [10000,10,1])
    print(re)
def job(x):
    y=0
    for i in range(x):
        for j in range(x):
            y=y+x
    return y



if __name__ == '__main__':
    multicpu()
import multiprocessing
import time
 
def func(msg1, msg2):
    print("msg1:", msg1, "msg2:", msg2)
    time.sleep(2)
    print("end")
 
if __name__ == "__main__":
    pool = multiprocessing.Pool(2)
    msgs = [(1,1),(2,2)]
    pool.starmap(func, msgs)
 
    print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
    pool.close()
    pool.join()
    print("Sub-process(es) done.")
 
# 输出
# msg1: 1 msg2: 1
# msg1: 2 msg2: 2
# end
# end
# Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
# Sub-process(es) done.

mp.cpu_count():获取cpu可用核心个数

job是需要多进程处理的函数;multicpu执行多进程处理;pool是一个任务池,输入参数空默认使用cpu的所有核心,输入参数为某一数字确定使用核心个数。

map函数执行进程池任务,参数一为待执行job函数,参数二为可迭代输入参数序列。

最后返回[1000000, 1000, 1];

import multiprocessing as mp


def job(q,x):
    y=0
    for i in range(x):
        for j in range(x):
            y=y+x
    q.put(y)


if __name__ == '__main__':
    q = mp.Queue()
    p1 = mp.Process(target=job, args=(q,10))
    p2 = mp.Process(target=job, args=(q,100))
    p1.start()
    p2.start()
    p1.join()
    p2.join()
    res1 = q.get()
    res2 = q.get()
    print(res1)
    print(res2)
    print(res1 + res2)

Queue存储进程输出,Prrocess建立进程,target为目标函数,args为输入参数;start(),开始进程;join()执行进程;

结果为1000
1000000
1001000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值