读real time localization and 3D reconstruction笔记

      在本文中,我们描述了一种估计校准摄像机(在实验车辆上定位)和环境的立体几何形状的运动的方法。使用的唯一数据是视频输入。实时计算相机运动的稳健估计,选择关键帧并允许特征3D重建。由于引入了快速且局部的束调整方法,该算法特别适合于长图像序列的重建,该方法确保沿着序列估计的相机姿势的良好准确性和一致性。与全局捆绑调整相比,它还大大降低了计算复杂性。

 

一增量算法的描述

算法首先确定将用于设置全局帧和系统集合的第一个三元组图像。然后用特征检测和匹配对视频流的每个帧执行稳健的姿势计算。选择一些帧成为用于3D点三角测量的关键帧。系统以增量方式运行,当添加新的关键帧和3D点时,我们继续进行局部束调整。

1.1兴趣点的检测和匹配

       检测哈里斯角,然后对于图1中的兴趣点,选择图2中定义的感兴趣区域中一些候选对应点,然后计算两个图中兴趣点和候选对应点及候选点邻域的相关,选择相关高的对作为对应点对。

1.2序列初始化

        我们要选择相对较远的帧才能计算极线几何,但是又要有足够多的共同点。

1.选择我们我_ {1}作为关键帧,I_ {2}距离我_ {1}稍远,但是有M个匹配的兴趣点,I_{2}我_ {3}也有M个匹配的兴趣点,而我_ {3}我_ {1}至少有μ{}”个兴趣点。

2. 我_ {1}作为世界坐标系。

3.用5点算法和RANSAC算前三个帧相对位姿。

4.兴趣点三角化为3D点,用我_ {1}我_ {3}中的匹配点。

5.LM算法完成位姿估计和三维坐标优化。

1.3实时鲁棒的姿态估计

我们假设相机姿势C_{1}C_{i-1}先前已在参考重建框架中计算过。目标是计算相机位姿C,我们匹配最后一帧一世和最后选择的关键帧I_{i-1}确定一组点p,它们在相机(C_{i-2}C_{i-1}C)上投影位置已知,而且这组点的3D位置也已经算过了。

1.从(C_{i-2}C_{i-1})重建的3D点,我们使用Grunert姿势估计算法来计算相机的位置C.(RANSAC过程给出了相机的初始估计Ç然后优化RT,用快速LM优化。)

2.计算我们相机C的协方差矩阵接,我们可以画90%的置信椭圆,如果Cov是协方差矩阵那么置信椭圆有\ bigtriangleup x ^ {T} Cov ^ { -  1} \ bigtriangleup x ^ {T} \ leq 6.25\ bigtriangleup x ^ {T} Cov ^ { -  1} \ bigtriangleup x ^ {T}服从\ chi _ {2}分布。

1.4 关键帧的选择和3D点的重建

并非所有的输入帧都被考虑用于3d重建,我们设置了一个标准,指示是否必须将新帧添加为关键帧。(标准:1.有足够的匹配点,2.计算位姿的确定性高)

确定了关键帧之后,对匹配点使用标准的三角测量方法进行重建。

1.5 局部束调整

当选择出最后一个关键帧I_{i}加入系统,则执行优化阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值