神经网络高阶技巧7--早停(early stopping)与保存最佳模型

早停法这个词,其实我们并不陌生。因为在传统的机器学习中,我们就用到过。例如在一个xgboost,或者lightgbm模型中,为了防止过拟合,我们就会用:

clf = lgb.train(params=param,train_set=trn_data,num_boost_round=50000,
valid_sets=val_data,verbose_eval=1000,early_stopping_rounds=500)

用early_stopping_rounds指定早停轮数,即如果在500轮内验证集指标不提升我们就停止迭代。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值