基于减法优化算法(SABO)优化CNN-BiGUR-Attention风电功率预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、算法介绍

三、研究内容

四、研究优势

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于减法优化算法(如减法平均优化算法SABO)优化CNN-BiGRU-Attention模型进行风电功率预测的研究,是一个结合了多种先进算法和技术的复杂课题。以下是对该研究的详细分析:

一、研究背景与意义

风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风速的随机性、间歇性和波动性等特点,使得风电功率的输出具有不确定性,给风电场的安全稳定运行和电网的调度管理带来了挑战。因此,准确预测风电功率对于提高风电场的经济效益和社会效益具有重要意义。

二、算法介绍

  1. 减法优化算法(如SABO)
    • 减法优化算法是一种基于群体智能的优化算法,其核心思想是通过迭代地执行减法平均操作来更新搜索个体的位置,从而找到问题的最优解。在风电功率预测中,SABO算法可以用于优化训练样本的特征,去除噪声和异常值,提高数据质量,进而提升模型的预测精度和泛化能力。
  2. CNN(卷积神经网络)
    • CNN是一种深度学习模型,擅长提取图像和时间序列数据中的局部特征信息。在风电功率预测中,CNN可以用于提取风速时间序列的局部特征,如风速变化趋势、风速梯度等,为模型提供更丰富的特征信息。
  3. BiGRU(双向门控循环单元)
    • BiGRU是GRU(门控循环单元)的一种改进形式,它结合了前向GRU和后向GRU,能够同时考虑时间序列数据的前后文信息。在风电功率预测中,BiGRU可以捕捉风速时间序列中的长期依赖关系,提高模型对未来风速的预测能力。
  4. Attention(注意力机制)
    • 注意力机制是一种机制,可以根据任务需求对输入信息进行加权,识别关键特征。在风电功率预测中,注意力机制可以帮助模型识别对预测结果影响较大的风速特征,并对其进行加权,从而提高模型的预测精度。

三、研究内容

  1. 数据预处理
    • 对收集到的风速、风向、温度、湿度等气象数据以及风电场的历史功率数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,确保数据的质量和完整性。
  2. 特征优化
    • 使用SABO算法对预处理后的数据进行特征优化,去除噪声和异常值,提高数据质量。
  3. 模型构建
    • 构建CNN-BiGRU-Attention模型用于风电功率预测。模型包括CNN层用于提取风速时间序列的局部特征,BiGRU层用于捕捉风速时间序列中的长期依赖关系,Attention层用于对关键特征进行加权。
  4. 模型训练与评估
    • 使用训练集对模型进行训练,通过反向传播算法更新网络参数,使得预测结果逼近实际的风电功率。使用测试集对训练好的模型进行评估,计算预测误差,如均方根误差(RMSE)、平均绝对误差(MAE)等指标来评估模型的预测精度。

四、研究优势

  1. 提高预测精度
    • 通过结合CNN、BiGRU和Attention机制,模型能够同时提取风速时间序列的局部特征和长期依赖关系,并对关键特征进行加权,从而提高预测精度。
  2. 增强泛化能力
    • SABO算法的使用有助于去除数据噪声和异常值,提高数据质量,进而增强模型的泛化能力。
  3. 实时预测
    • 模型具有较高的计算效率,可以支持实时风电功率预测,为风电场的运行调度提供及时准确的信息支持。

五、未来展望

未来可以进一步探索多源数据融合、更先进的深度学习模型(如Transformer网络)以及实时预测系统的开发,以进一步提升风电功率预测的精度和实时性。同时,也可以关注风电功率预测在智能电网、能源管理等领域的应用拓展。

📚2 运行结果

部分代码:

% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')

figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')


figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')

%% 优化CNN-BiGRU-Attention

disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')

%% 初始化参数 
popsize=10;   %初始种群规模 
maxgen=8;   %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2  2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10];    %参数的上限
dim = length(lb);%数量

% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';

[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);

%% 绘制进化曲线 
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')

%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);

%% 比较算法预测值 
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
    'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980]) 
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560]) 
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off


%% 比较算法误差
test_y = T_test;
Test_all = [];

y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];


y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
     

str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)

%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color=    [0.66669    0.1206    0.108
    0.1339    0.7882    0.8588
    0.1525    0.6645    0.1290
    0.8549    0.9373    0.8275   
    0.1551    0.2176    0.8627
    0.7843    0.1412    0.1373
    0.2000    0.9213    0.8176
      0.5569    0.8118    0.7882
       1.0000    0.5333    0.5176];
figure('Units', 'pixels', ...
    'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on

for i = 1 : size(plot_data_t,2)
    x_data(:, i) = b(i).XEndPoints'; 
end

for i =1:size(plot_data_t,2)
    b(i).FaceColor = color(i,:);
    b(i).EdgeColor=[0.3353    0.3314    0.6431];
    b(i).LineWidth=1.2;
end

for i = 1 : size(plot_data_t,1)-1
    xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
    b1=xline(xilnk,'--','LineWidth',1.2);
    hold on
end 

ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.

[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.

[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.

[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值