Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)接着的第T+1行有S个数,表示和草儿家相连的城市;接着的第T+2行有D个数,表示草儿想去地方。
Output
输出草儿能去某个喜欢的城市的最短时间。
Sample Input
6 2 3
1 3 5
1 4 7
2 8 12
3 8 4
4 9 12
9 10 2
1 2
8 9 10
Sample Output
9
把家设置为0,相邻城市的距离设为0,转化为单源Dijkstra
#include <stdio.h>
#include <string.h>
#define inf 100000001
#define xx 1020
int c[xx][xx],dis[xx]; //定义全局变量,c为两点间距离,dis为到0点距离
void dij(int n) //Dijkstra算法
{
int min,j;
int used[n+1]; //标记用数组,已使用记为1,未使用记为0
for(int i=0;i<=n;++i) //初始化dis used
{
used[i]=0;
dis[i]=c[0][i];
}
used[0]=1;
for(int i=0;i<=n;++i) //同点间距离为0
c[i][i]=0;
for(int i=0;i<=n;++i)
{
min=inf;
for(int k=1;k<=n;++k) //找到距离0点最近的未使用点,并标记为已使用
{
if(dis[k]<min&&!used[k])
{
min=dis[k];
j=k;
}
}
used[j]=1;
for(int k=1;k<=n;++k) //重新修改最短距离
{
if(dis[k]>dis[j]+c[j][k]&&!used[k])
{
dis[k]=dis[j]+c[j][k];
c[k][0]=c[0][k]=dis[k];
}
}
}
}
int main()
{
int t,s,d,a,b,n,ss,q[xx],min,x;
while(scanf("%d%d%d",&t,&s,&d)!=EOF)
{
n=0;
for(int i=0;i<xx;++i) //初始化 dis c为最大;
{
dis[i]=inf;
for(int j=0;j<xx;++j)
c[i][j]=inf;
}
for(int i=0;i<t;i++ )
{
scanf("%d%d%d",&a,&b,&x);
if( c[a][b]>x ) //这一句判定是必须有的。。
c[a][b]=c[b][a]=x;
n=(a>b ? a:b) > n ? (a>b?a:b) : n; //n为城市数,取s,d中最大的
}
dis[0]=0;
for(int i=0;i<s;++i) //输入相邻城市,并定义距离为0;
{
scanf("%d",&ss);
c[0][ss]=c[ss][0]=0;
}
for(int i=0;i<d;++i) //输入终点城市
{
scanf("%d",&q[i]);
}
dij(n);
min=inf; //找最小的dis
for(int i=0;i<d;++i)
{
if(dis[q[i]]<min)
min=dis[q[i]];
}
printf("%d\n",min);
}
return 0;
}