NNDL 实验三 线性回归

目录

2.1 机器学习实践五要素

2.2 实现一个简单的线性回归模型

模型构建

损失函数

2.3多项式回归

模型构建

模型训练

模型评估

2.4Runner类介绍

2.5波士顿房价


机器学习(Machine Learning,ML)就是让计算机从数据中进行自动学习,得到某种知识(或规律)。作为一门学科,机器学习通常指一类问题以及解决这类问题的方法,即如何从观测数据(样本)中寻找规律,并利用学习到的规律(模型)对未知或无法观测的数据进行预测。

本章内容基于《神经网络与深度学习》第 2 章:机器学习概述 相关内容进行设计,主要包含两部分:

  • 模型解读:介绍机器学习实践五要素(数据、模型、学习准则、优化算法、评估指标)的原理剖析和相应的代码实现。通过理论和代码的结合,加深对机器学习的理解;
  • 案例实践:基于机器学习线性回归方法,通过数据处理、模型构建、训练配置、组装训练框架Runner、模型训练和模型预测等过程完成波士顿房价预测任务。

2.1 机器学习实践五要素

要通过机器学习来解决一个特定的任务时,我们需要准备5个方面的要素:

  1. 数据集:收集任务相关的数据集用来进行模型训练和测试,可分为训练集、验证集和测试集;
  2. 模型:实现输入到输出的映射,通常为可学习的函数;
  3. 学习准则:模型优化的目标,通常为损失函数和正则化项的加权组合;
  4. 优化算法:根据学习准则优化机器学习模型的参数;
  5. 评价指标:用来评价学习到的机器学习模型的性能.

2.2 实现一个简单的线性回归模型

导入包

from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
import torch
import math
from nndl.op import Op
# 真实函数的参数缺省值为 w=1.2,b=0.5
def linear_func(x,w=1.2,b=0.5):
    y = w*x + b
    return y

#进行随机采样输入特征x,并代入上面函数得到输出标签y
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
    """
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    """

    # 均匀采样
    # 使用paddle.rand在生成sample_num个随机数
    X = torch.rand([sample_num]) * (interval[1]-interval[0]) + interval[0]
    y = func(X)

    # 生成高斯分布的标签噪声
    # 使用paddle.normal生成0均值,noise标准差的数据
    epsilon = torch.normal(0,noise,y.shape[0])
    y = y + epsilon
    if add_outlier:     # 生成额外的异常点
        outlier_num = int(len(y)*outlier_ratio)
        if outlier_num != 0:
            # 使用paddle.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = torch.randint(len(y),size = [outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y

#生成数据集,生成150个带噪音的样本,其中包括100个训练样本,50个测试样本。
func = linear_func
interval = (-10,10)
train_num = 100 # 训练样本数目
test_num = 50 # 测试样本数目
noise = 2
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise, add_outlier = False)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise, add_outlier = False)

X_train_large, y_train_large = create_toy_data(func=func, interval=interval, sample_num=5000, noise = noise, add_outlier = False)

# paddle.linspace返回一个Tensor,Tensor的值为在区间start和stop上均匀间隔的num个值,输出Tensor的长度为num
X_underlying = torch.linspace(interval[0],interval[1],train_num)
y_underlying = linear_func(X_underlying)

# 绘制数据
plt.scatter(X_train, y_train, marker='*', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor='#f19ec2', s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"underlying distribution")
plt.legend(fontsize='x-large') # 给图像加图例
plt.savefig('ml-vis.pdf') # 保存图像到PDF文件中
plt.show()

 

模型构建

构建线性回归模型

torch.manual_seed(10)  # 设置随机种子
# 线性算子
class Linear(Op):
    def __init__(self, input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """
        self.input_size = input_size
        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(size=[self.input_size, 1], dtype=torch.float32)
        self.params['b'] = torch.zeros(size=[1], dtype=torch.float32)

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
           - X: tensor, shape=[N,D]
           注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
           - y_pred: tensor, shape=[N]
        """
        N, D = X.shape
        if self.input_size == 0:
            return torch.full(([N, 1]), self.params['b'])

        assert D == self.input_size  # 输入数据维度合法性验证
        # 使用torch.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X, self.params['w']) + self.params['b']
        return y_pred

# 这里的X矩阵是由N个x向量的转置拼接成的
input_size = 3
N = 2
X = torch.randn(N, input_size)  # 生成2个维度为3的数据
model = Linear(input_size)
y_pred = model(X)
print("y_pred:", y_pred)  # 输出结果的个数也是2个

损失函数

回归任务是对连续值的预测,希望模型能根据数据的特征输出一个连续值作为预测值。因此回归任务中常用的评估指标是均方误差。

def mean_squared_error(y_true, y_pred):
    """
    输入:
       - y_true: tensor,样本真实标签
       - y_pred: tensor, 样本预测标签
    输出:
       - error: float,误差值
    """
    assert y_true.shape[0] == y_pred.shape[0]
    # torch.square计算输入的平方值
    # torch.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
    error = torch.mean(torch.square(y_true - y_pred))
    return error

# 构造一个简单的样例进行测试:[N,1], N=2
y_true = torch.tensor([[-0.2], [4.9]], dtype=torch.float32)
y_pred = torch.tensor([[1.3], [2.5]], dtype=torch.float32)
error = mean_squared_error(y_true=y_true, y_pred=y_pred).item()
print("error:", error)

 

 模型优化

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差(真实目标对象与拟合目标对象的差)的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

def optimizer_lsm(model, X, y, reg_lambda=0):
    '''
      输入:
         - model: 模型
         - X: tensor, 特征数据,shape=[N,D]
         - y: tensor,标签数据,shape=[N]
         - reg_lambda: float, 正则化系数,默认为0
      输出:
         - model: 优化好的模型
      '''
    N, D = X.shape
    # 对输入特征数据所有特征向量求平均
    x_bar_tran = torch.mean(X,0).T
    # 求标签的均值,shape=[1]
    y_bar = torch.mean(y)
    # torch.subtract通过广播的方式实现矩阵减向量
    x_sub = torch.subtract(X, x_bar_tran)
    # 使用torch.all判断输入tensor是否全0
    if torch.all(x_sub == 0):
        model.params['b'] = y_bar
        model.params['w'] = torch.zeros([D])
        return model

    # torch.inverse求方阵的逆
    tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) +
                         reg_lambda * torch.eye(D))
    w = torch.matmul(torch.matmul(tmp, x_sub.T), (y - y_bar))
    b = y_bar - torch.matmul(x_bar_tran, w)
    model.params['b'] = b
    model.params['w'] = torch.squeeze(w, -1)
    return model

模型训练

在准备了数据、模型、损失函数和参数学习的实现之后,我们开始模型的训练。在回归任务中,模型的评价指标和损失函数一致,都为均方误差。

input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:", model.params['w'].item(), "b_pred: ", model.params['b'].item())
y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print("train error: ", train_error)

model_large = Linear(input_size)
model_large = optimizer_lsm(model_large,X_train_large.reshape([-1,1]),y_train_large.reshape([-1,1]))
print("w_pred large:",model_large.params['w'].item(), "b_pred large: ", model_large.params['b'].item())
y_train_pred_large = model_large(X_train_large.reshape([-1,1])).squeeze()
train_error_large = mean_squared_error(y_true=y_train_large, y_pred=y_train_pred_large).item()
print("train error large: ",train_error_large)

模型评估

y_test_pred = model(X_test.reshape([-1,1])).squeeze()
test_error = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
print("test error: ",test_error)
y_test_pred_large = model_large(X_test.reshape([-1,1])).squeeze()
test_error_large = mean_squared_error(y_true=y_test, y_pred=y_test_pred_large).item()
print("test error large: ",test_error_large)

2.3多项式回归

数据集构建

import torch
import math
# sin函数: sin(2 * pi * x)
def sin(x):
    y = torch.sin(2 * math.pi * x)
    return y

from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库

# 生成数据
func = sin
interval = (0, 1)
train_num = 15
test_num = 10
noise = 0.5  # 0.1
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise=noise)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise=noise)
X_underlying = torch.linspace(interval[0], interval[1], 100)
y_underlying = sin(X_underlying)
# 绘制图像
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor="b", s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.legend(fontsize='x-large')
plt.savefig('ml-vis2.pdf')
plt.show()

 

在输出结果中,黑色的曲线是周期为 1 的 sin 函数曲线,蓝色的圆圈为生成的训练样本数据,红色的圆圈为生成的测试样本数据。

模型构建

# 多项式转换
def polynomial_basis_function(x, degree=2):
    """
    输入:
       - x: tensor, 输入的数据,shape=[N,1]
       - degree: int, 多项式的阶数
       example Input: [[2], [3], [4]], degree=2
       example Output: [[2^1, 2^2], [3^1, 3^2], [4^1, 4^2]]
       注意:本案例中,在degree>=1时不生成全为1的一列数据;degree为0时生成形状与输入相同,全1的Tensor
    输出:
       - x_result: tensor
    """
    if degree == 0:
        # x = torch.ones(x.shape)
        # x = x.to(torch.float32)
        # return x
        return torch.ones(x.shape)
    x_tmp = x
    x_result = x_tmp
    for i in range(2, degree + 1):
        x_tmp = torch.multiply(x_tmp, x)  # 逐元素相乘
        x_result = torch.concat((x_result, x_tmp), dim=-1)
    return x_result

# 简单测试
data = [[2], [3], [4]]
X = torch.tensor(data=data)
X = X.to(torch.float32)
degree = 3
transformed_X = polynomial_basis_function(X, degree=degree)
print("转换前:", X)
print("阶数为", degree, "转换后:", transformed_X)

模型训练

plt.rcParams['figure.figsize'] = (12.0, 8.0)

for i, degree in enumerate([0, 1, 3, 8]):  # []中为多项式的阶数
    model = Linear(degree)
    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), degree)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), degree)
    model = optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))  # 拟合得到参数
    y_underlying_pred = model(X_underlying_transformed).squeeze()
    print(model.params)

    # 绘制图像
    plt.subplot(2, 2, i + 1)
    plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
    plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
    plt.plot(X_underlying, y_underlying_pred, c='#f19ec2', label="predicted function")
    plt.ylim(-2, 1.5)
    plt.annotate("M={}".format(degree), xy=(0.95, -1.4))

# plt.legend(bbox_to_anchor=(1.05, 0.64), loc=2, borderaxespad=0.)
plt.legend(loc='lower left', fontsize='x-large')
plt.savefig('ml-vis3.pdf')
plt.show()

观察可视化结果,红色的曲线表示不同阶多项式分布拟合数据的结果:
当 M=0 或 M=1 时,拟合曲线较简单,模型欠拟合;
当 M=8 时,拟合曲线较复杂,模型过拟合;
当 M=3 时,模型拟合最为合理。 

模型评估

# 训练误差和测试误差
training_errors = []
test_errors = []
distribution_errors = []
 
# 遍历多项式阶数
for i in range(9):
    model = Linear(i)
 
    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), i)
    X_test_transformed = polynomial_basis_function(X_test.reshape([-1, 1]), i)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), i)
 
    optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))
 
    y_train_pred = model(X_train_transformed).squeeze()
    y_test_pred = model(X_test_transformed).squeeze()
    y_underlying_pred = model(X_underlying_transformed).squeeze()
 
    train_mse = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
    training_errors.append(train_mse)
 
    test_mse = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
    test_errors.append(test_mse)
 
    # distribution_mse = mean_squared_error(y_true=y_underlying, y_pred=y_underlying_pred).item()
    # distribution_errors.append(distribution_mse)
 
print("train errors: \n", training_errors)
print("test errors: \n", test_errors)
# print ("distribution errors: \n", distribution_errors)
 
# 绘制图片
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.plot(training_errors, '-.', mfc="none", mec='#e4007f', ms=10, c='#e4007f', label="Training")
plt.plot(test_errors, '--', mfc="none", mec='#f19ec2', ms=10, c='#f19ec2', label="Test")
# plt.plot(distribution_errors, '-', mfc="none", mec="#3D3D3F", ms=10, c="#3D3D3F", label="Distribution")
plt.legend(fontsize='x-large')
plt.xlabel("degree")
plt.ylabel("MSE")
plt.savefig('ml-mse-error.pdf')
plt.show()

train errors: 
 [0.8762667179107666, 0.31764814257621765, 0.3115185797214508, 0.1461183875799179, 0.1445353478193283, 0.14801444113254547, 0.3611568510532379, 0.15983515977859497, 1.5187472105026245]
test errors: 
 [0.7209194898605347, 0.4560123085975647, 0.4298802316188812, 0.280383437871933, 0.2685888111591339, 0.2718125283718109, 0.31731802225112915, 0.24866989254951477, 0.6392737030982971]

degree = 8 # 多项式阶数
reg_lambda = 0.0001 # 正则化系数
X_train_transformed = polynomial_basis_function(X_train.reshape([-1,1]), degree)
X_test_transformed = polynomial_basis_function(X_test.reshape([-1,1]), degree)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1,1]), degree)
model = Linear(degree)
 
optimizer_lsm(model,X_train_transformed,y_train.reshape([-1,1]))
y_test_pred=model(X_test_transformed).squeeze()
y_underlying_pred=model(X_underlying_transformed).squeeze()
model_reg = Linear(degree)
 
optimizer_lsm(model_reg,X_train_transformed,y_train.reshape([-1,1]),reg_lambda=reg_lambda)
y_test_pred_reg=model_reg(X_test_transformed).squeeze()
y_underlying_pred_reg=model_reg(X_underlying_transformed).squeeze()
mse = mean_squared_error(y_true = y_test, y_pred = y_test_pred).item()
print("mse:",mse)
 
mes_reg = mean_squared_error(y_true = y_test, y_pred = y_test_pred_reg).item()
print("mse_with_l2_reg:",mes_reg)
# 绘制图像
plt.scatter(X_train, y_train, facecolor="none", edgecolor="#e4007f", s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.plot(X_underlying, y_underlying_pred, c='#e4007f', linestyle="--", label="$deg. = 8$")
plt.plot(X_underlying, y_underlying_pred_reg, c='#f19ec2', linestyle="-.", label="$deg. = 8, \ell_2 reg$")
plt.ylim(-1.5, 1.5)
plt.annotate("lambda={}".format(reg_lambda), xy=(0.82, -1.4))
plt.legend(fontsize='large')
plt.savefig('ml-vis4.pdf')
plt.show()

2.4Runner类介绍

Runner类的成员函数定义如下:

  • __init__函数:实例化Runner类时默认调用,需要传入模型、损失函数、优化器和评价指标等;
  • train函数:完成模型训练,指定模型训练需要的训练集和验证集;
  • evaluate函数:通过对训练好的模型进行评价,在验证集或测试集上查看模型训练效果;
  • predict函数:选取一条数据对训练好的模型进行预测;
  • save_model函数:模型在训练过程和训练结束后需要进行保存;
  • load_model函数:调用加载之前保存的模型。
class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        self.model = model         # 模型
        self.optimizer = optimizer # 优化器
        self.loss_fn = loss_fn     # 损失函数   
        self.metric = metric       # 评估指标

    # 模型训练
    def train(self, train_dataset, dev_dataset=None, **kwargs):
        pass

    # 模型评价
    def evaluate(self, data_set, **kwargs):
        pass

    # 模型预测
    def predict(self, x, **kwargs):
        pass

    # 模型保存
    def save_model(self, save_path):
        pass

    # 模型加载
    def load_model(self, model_path):
        pass

2.5波士顿房价

数据处理

import torch
import pandas as pd # 开源数据分析和操作工具
 
# 利用pandas加载波士顿房价的数据集
data=pd.read_csv("boston_house_prices.csv")
# 预览前5行数据
print(data.head())

数据清理

# 查看各字段缺失值统计情况 
print(data.isna().sum())

从输出结果看,波士顿房价预测数据集中不存在缺失值的情况。
若存在缺失值还需要对缺失值进行处理,将缺失数据视为噪声,将其使用临界值取代。

异常值

from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
# 箱线图查看异常值分布
def boxplot(data, fig_name):
    # 绘制每个属性的箱线图
    data_col = list(data.columns)
 
    # 连续画几个图片
    plt.figure(figsize=(5, 5), dpi=300)
    # 子图调整
    plt.subplots_adjust(wspace=0.6)
    # 每个特征画一个箱线图
    for i, col_name in enumerate(data_col):
        plt.subplot(3, 5, i + 1)
        # 画箱线图
        plt.boxplot(data[col_name],
                    showmeans=True,
                    meanprops={"markersize": 1, "marker": "D", "markeredgecolor": '#f19ec2'},  # 均值的属性
                    medianprops={"color": '#e4007f'},  # 中位数线的属性
                    whiskerprops={"color": '#e4007f', "linewidth": 0.4, 'linestyle': "--"},
                    flierprops={"markersize": 0.4},
                    )
        # 图名
        plt.title(col_name, fontdict={"size": 5}, pad=2)
        # y方向刻度
        plt.yticks(fontsize=4, rotation=90)
        plt.tick_params(pad=0.5)
        # x方向刻度
        plt.xticks([])
    plt.savefig('ml-vis5.pdf')
    plt.show()
 
boxplot(data,'ml-vis5.pdf')
 

 

# 四分位处理异常值
num_features=data.select_dtypes(exclude=['object','bool']).columns.tolist()
 
for feature in num_features:
    if feature =='CHAS':
        continue
    
    Q1  = data[feature].quantile(q=0.25) # 下四分位
    Q3  = data[feature].quantile(q=0.75) # 上四分位
    
    IQR = Q3-Q1 
    top = Q3+1.5*IQR # 最大估计值
    bot = Q1-1.5*IQR # 最小估计值
    values=data[feature].values
    values[values > top] = top # 临界值取代噪声
    values[values < bot] = bot # 临界值取代噪声
    data[feature] = values.astype(data[feature].dtypes)
 
# 再次查看箱线图,异常值已被临界值替换(数据量较多或本身异常值较少时,箱线图展示会不容易体现出来)
boxplot(data, 'ml-vis6.pdf')

 

数据集划分

import torch
 
torch.seed()
 
# 划分训练集和测试集
def train_test_split(X, y, train_percent=0.8):
    n = len(X)
    shuffled_indices = torch.randperm(n)  # 返回一个数值在0到n-1、随机排列的1-D Tensor
    train_set_size = int(n * train_percent)
    train_indices = shuffled_indices[:train_set_size]
    test_indices = shuffled_indices[train_set_size:]
 
    X = X.values
    y = y.values
 
    X_train = X[train_indices]
    y_train = y[train_indices]
 
    X_test = X[test_indices]
    y_test = y[test_indices]
 
    return X_train, X_test, y_train, y_test
 
 
X = data.drop(['MEDV'], axis=1) #MEDV代表房价
y = data['MEDV']
 
X_train, X_test, y_train, y_test = train_test_split(X, y)  # X_train每一行是个样本,shape[N,D]

特征工程

X_train = torch.tensor(X_train,dtype=torch.float32)
X_test = torch.tensor(X_test,dtype=torch.float32)
y_train = torch.tensor(y_train,dtype=torch.float32)
y_test = torch.tensor(y_test,dtype=torch.float32)
 
X_min = torch.min(X_train)
X_max = torch.max(X_train)
 
X_train = (X_train-X_min)/(X_max-X_min)
 
X_test  = (X_test-X_min)/(X_max-X_min)
 
# 训练集构造
train_dataset=(X_train,y_train)
# 测试集构造
test_dataset=(X_test,y_test)

模型构建

# 模型实例化
input_size = 12
model=Linear(input_size)

完善Runner类

import torch.nn as nn
mse_loss = nn.MSELoss()

import os
from nndl.opitimizer import optimizer_lsm
 
class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        # 优化器和损失函数为None,不再关注
        # 模型
        self.model = model
        # 评估指标
        self.metric = metric
        # 优化器
        self.optimizer = optimizer
 
    def train(self, dataset, reg_lambda, model_dir):
        X, y = dataset
        self.optimizer(self.model, X, y, reg_lambda)
 
        # 保存模型
        self.save_model(model_dir)
 
    def evaluate(self, dataset, **kwargs):
        X, y = dataset
 
        y_pred = self.model(X)
        result = self.metric(y_pred, y)
 
        return result
 
    def predict(self, X, **kwargs):
        return self.model(X)
 
    def save_model(self, model_dir):
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
 
        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        torch.save(model.params, params_saved_path)
 
    def load_model(self, model_dir):
        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        self.model.params = torch.load(params_saved_path)
 
optimizer = optimizer_lsm
# 实例化Runner
runner = Runner(model, optimizer=optimizer, loss_fn=None, metric=mse_loss)

模型训练

# 模型保存到文件夹中
saved_dir = 'boston'
# 启动训练
runner.train(train_dataset, reg_lambda=0, model_dir=saved_dir)

columns_list = data.columns.to_list()
weights = runner.model.params['w'].tolist()
b = runner.model.params['b'].item()
 
for i in range(len(weights)):
    print(columns_list[i],"weight:",weights[i])
 
print("b:",b)

模型测试

# 加载模型权重
runner.load_model(saved_dir)
 
mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())

模型预测

runner.load_model(saved_dir)
pred = runner.predict(X_test[:1])
print("真实房价:",y_test[:1].item())
print("预测的房价:",pred.item())

问题1:使用类实现机器学习模型的基本要素有什么优点?
问题2:算子op、优化器opitimizer放在单独的文件中,主程序在使用时调用该文件。这样做有什么优点?
问题3:线性回归通常使用平方损失函数,能否使用交叉熵损失函数?为什么?

1、无需估计参数,既可以用来做分类也可以用来做回归,易于实现

2、方便调用,不易出错

3、从平方损失函数运用到多分类场景下,可知平方损失函数对每一个输出结果都十分看重,而交叉熵损失函数只对正确分类的结果看重。交叉熵损失函数只和分类正确的预测结果有关。而平方损失函数还和错误的分类有关,该损失函数除了让正确分类尽量变大,还会让错误分类都变得更加平均,但实际中后面的这个调整使没必要的。但是对于回归问题这样的考虑就显得重要了,因而回归问题上使用交叉熵并不适合。
 


实验感悟:本次实验参考了老师给出的实例,这部分内容对我个人来说还是不太熟悉,通过本次实验对线性回归模型有了更深的认识,在以后的学习过程中要花时间多练习。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值