AI大模型 | ​Phi 3.5 系列发布了

在这里插入图片描述

微软发布了3个Phi 3.5 系列模型

  • Phi 3.5 mini instruct (3.8B, 128k context length)
  • Phi 3.5 MoE (42B-A6.6B, 128k context)
  • Phi 3.5 Vision instruct (VLM)

1、Phi 3.5 mini instruct

模型链接:https://huggingface.co/microsoft/Phi-3.5-mini-instruct

1.1 效果

多语言支持

下表突出显示了Phi-3.5 Mini在多语言MMLU、MEGA和多语言MMLU-pro数据集上的多语言能力。整体而言,我们发现即使只有38亿个有效参数,该模型在多语言任务上与拥有更多有效参数的其他模型相比也很有竞争力。

下表显示了在一些支持的语言中的多语言MMLU分数。

长文本上下文

Phi-3.5-mini支持128K的上下文长度,因此该模型能够完成多种长文本上下文任务,包括长文档/会议摘要、长文档问答和长文档信息检索。我们发现Phi-3.5-mini明显优于仅支持8K上下文长度的Gemma-2系列。Phi-3.5-mini与其他更大的开放权重模型,如Llama-3.1-8B-instruct、Mistral-7B-instruct-v0.3和Mistral-Nemo-12B-instruct-2407相比也很有竞争力。

RULER: 一个基于检索的长文本理解基准测试

RepoQA: 一个用于长文本代码理解的基准测试

2、Phi 3.5 MoE

模型链接:https://huggingface.co/microsoft/Phi-3.5-MoE-instruct

2.1 效果

在各种基准测试上将Phi-3.5-MoE与一组模型进行了比较。以下是该模型在代表性基准测试上的质量概览:

3、Phi 3.5 Vision instruct

模型链接:https://huggingface.co/microsoft/Phi-3.5-vision-instruct

3.1 效果

该模型基于宝贵的客户反馈,实现了多帧图像理解和推理能力。主要的多帧功能包括详细的图像比较、多图像摘要/讲故事和视频摘要,这些在办公场景中有广泛的应用。在大多数单图像基准测试上的性能有所提升,例如,MMMU性能从40.2提升到43.0,MMBench性能从80.5提升到81.9,文档理解基准TextVQA从70.9提升到72.0。

以下是在现有多图像基准测试上的比较结果。平均而言,我们的模型在同等规模上优于竞争对手的模型,并在多帧能力和视频摘要方面与更大的模型相比具有竞争力。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值