手把手教你Ollama 安装部署教程,一键搭建本地大模型,不挑环境、不挑配置!

一、Ollama介绍

1、基本介绍

Ollama是一个支持在WindowsLinuxMacOS上本地运行大语言模型的工具。它允许用户非常方便地运行和使用各种大语言模型,比如Qwen模型等。用户只需一行命令就可以启动模型。

主要特点包括:

  1. 跨平台支持WindowsLinuxMacOS系统。
  2. 提供了丰富的模型库,包括QwenLlama等1700+大语言模型,可以在官网model library中直接下载使用。
  3. 支持用户上传自己的模型。用户可以将huggingface等地方的ggml格式模型导入到ollama中使用。也可以将基于pytorch等格式的模型转换为ggml格式后导入。
  4. 允许用户通过编写modelfile配置文件来自定义模型的推理参数,如temperaturetop_p等,从而调节模型生成效果。
  5. 支持多GPU并行推理加速。在多卡环境下,可以设置环境变量来指定特定GPU
  6. 强大的技术团队支持,很多模型开源不到24小时就能获得支持。

总的来说,Ollama降低了普通开发者使用大语言模型的门槛,使得本地部署体验大模型变得简单易行。对于想要搭建自己的AI应用,或者针对特定任务调优模型的开发者来说,是一个非常有用的工具。它的一些特性,如允许用户自定义模型参数,对模型进行个性化适配提供了支持。

2、官网

  • Ollama 下载:https://ollama.com/download

  • Ollama 官方主页:https://ollama.com

  • Ollama 官方 GitHub 源代码仓库:https://github.com/ollama/ollama/

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

二、window 安装

直接从下载页面下载相对应系统的安装程序,Windows安装程序选择Windows的安装包,点击“Download for Windows(Preview)

在这里插入图片描述

下载好以后一路install 安装即可。

在这里插入图片描述

安装完成之后,打开一个cmd命令窗口,输入“ollama”命令,如果显示ollama相关的信息就证明安装已经成功了!

在这里插入图片描述

三、Mac 安装

直接从下载页面下载相对应系统的安装程序,Windows安装程序选择Windows的安装包,点击“Download for Mac

在这里插入图片描述

下载好后打开安装命令行

在这里插入图片描述

四、 Linux 安装

在Linux系统上,可以通过脚本安装或源码编译的方式来安装Ollama。下面分别介绍这两种安装方法。

1、脚本安装

Ollama提供了一键安装脚本,可以快速在Linux系统上安装Ollama。安装步骤如下:

  1. 打开终端,执行以下命令下载安装脚本:

    curl -fsSL https://ollama.com/install.sh | sh   
    
  2. 等待安装完成。安装脚本会自动下载所需的组件,并完成Ollama的安装与配置。

  3. 安装完成后,可以通过以下命令启动Ollama:

    ollama serve   
    

2、二进制安装

  1. 将 Ollama 的二进制文件下载到 PATH 中的目录:
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama  
  1. 将 Ollama 添加为自启动服务,首先,为 Ollama 创建用户:
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama   
  1. 然后在该位置:/etc/systemd/system/ollama.service 创建服务文件
[Unit]
Description=Ollama Service
After=network-online.target

[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3

[Install]
WantedBy=default.target
  1. 设置开机自启动
sudo systemctl daemon-reload
sudo systemctl enable ollama
  1. 启动 Ollama,使用以下命令启动 Ollama:systemd

    sudo systemctl start ollama   
    

3、安装特定版本

设置 OLLAMA_VERSION字段,,可以安装对应的版本

curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.13 sh   

4、查看日志

查看作为启动服务运行的 Ollama 的日志:

journalctl -e -u ollama   

5、更新

通过shell 脚本更新 Ollama:

curl -fsSL https://ollama.com/install.sh | sh   

或者下载 Ollama 二进制文件:

sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama   sudo chmod +x /usr/bin/ollama   

6、卸载

  • 删除 Ollama 服务:
sudo systemctl stop ollama
sudo systemctl disable ollama
sudo rm /etc/systemd/system/ollama.service
  • 从 bin 目录中删除 Ollama 二进制文件:/usr/local/bin ,/usr/bin ,/bin
sudo rm $(which ollama)   
  • 删除下载的模型和 Ollama 服务用户和组:
sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama

五、命令参数

以下是 Ollama 使用常见的指令:

ollama serve         #启动ollama
ollama create        #从模型文件创建模型
ollama show          #显示模型信息
ollama run           #运行模型
ollama pull          #从注册表中拉取模型
ollama push          #将模型推送到注册表
ollama list          #列出模型
ollama cp            #复制模型
ollama rm            #删除模型
ollama help          #获取有关任何命令的帮助信息  

六、设置自定义模型下载路径

默认情况下,ollama模型的存储目录如下:

  • macOS: ~/.ollama/models
  • Linux: /usr/share/ollama/.ollama/models
  • Windows: C:\Users\<username>\.ollama\models

1、Windows 更改 Ollama 模型存放位置

在Windows系统中,若要更改Ollama模型的存放位置,可以按照以下步骤操作:

  1. 打开环境变量编辑界面。可以通过以下方式:
  • 右键点击“此电脑”或“我的电脑”,选择“属性”。
  • 在系统窗口中选择“高级系统设置”。
  • 在系统属性窗口中点击“环境变量”按钮。
  1. 在环境变量窗口中,点击“新建”创建一个新的系统变量或用户变量。
  • 变量名:OLLAMA_MODELS
  • 变量值:输入你希望设置的新模型存放路径,例如:D:\Ollama\Models
  1. 点击“确定”保存设置。

  2. 重启任何已经打开的Ollama相关应用程序,以便新的路径生效。

在这里插入图片描述

2、Linux/Mac 更改 Ollama 模型存放位置

在Linux或Mac系统中,更改Ollama模型存放位置的步骤如下:

  1. 打开终端。

  2. 创建一个新的目录作为模型存放位置,例如:

    mkdir -p /path/to/your/new/ollama/models   
    
  3. 设置环境变量。在Linux系统中,可以通过编辑~/.bashrc~/.bash_profile文件(对于bash shell)或~/.zshrc文件(对于zsh shell)。在Mac系统中,可以通过编辑~/.bash_profile~/.zshrc文件。使用以下命令编辑文件:

    nano ~/.bashrc  # 或者使用其他的文本编辑器,如vim   
    
  4. 在文件末尾添加以下行来设置OLLAMA_MODELS环境变量:

    export OLLAMA_MODELS="/path/to/your/new/ollama/models"   
    
  5. 保存并关闭文件。如果你使用的是nano编辑器,可以按Ctrl + X,然后按Y确认保存,最后按Enter键。

  6. 使环境变量生效。在终端中运行以下命令:

    source ~/.bashrc  # 或者source ~/.bash_profile,取决于你编辑的文件   
    
  7. 重启任何已经打开的Ollama相关应用程序,以便新的路径生效。

七、导入 huggingface 模型


Ollama 从最新版0.3.13开始支持从 Huggingface Hub 上直接拉取各种模型,包括社区创建的 GGUF 量化模型。用户可以通过简单的命令行指令快速运行这些模型。

可以使用如下命令:

ollama run hf.co/{username}/{repository}   

请注意,您可以使用 hf.cohuggingface.co 作为域名。

在这里插入图片描述

要选择不同的量化方案,只需在命令中添加一个标签:

ollama run hf.co/{username}/{repository}:{quantization}   

例如:

ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:IQ3_M
ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:Q8_0

量化名称不区分大小写,因此以下命令同样有效:

ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:iq3_m   

您还可以直接使用完整的文件名作为标签:

ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:Llama-3.2-3B-Instruct-IQ3_M.gguf   


八、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

内容概要:本文主要介绍了一个基于AI的深度学习语言模型DeepSeek的本地部署指南。内容分为四个主要部分。首先介绍了Ollama安装流程,包括前往官方网站选择匹配系统的软件包下载,并依据同操作系统完成相应的安装操作。接下来重点阐述了针对同硬件条件下载合适的DeepSeek版本的方法,从选择所需规模(参数量)到执行具体加载命令均作出详述。还提及了为了方便用户进一步利用Docker以及一个叫Open WebUI工具来进行容器管理和服务提供所做出的一些辅助性指导措施。最后简要说明了怎样在命令终端启动该AI助手以及在浏览器界面上完成初次登录验证。 适合人群:想要将大型预训练AI语言模型应用于本地环境的研究员或者开发者;具有一定软硬件搭建基础知识的人士。 使用场景及目标:适用于想要快速把玩大型语言模型却苦于云服务成本太高或是希望提高对LLM底层机制的理解从而更好地开展后续科研工作的用户。他们能够通过这个指南学会一套通用的大规模语言模型部署解决方案,为将来类似项目的实施打下坚实的基础。 阅读建议:读者应当注意官方提供的最新资料和社区讨论来补充本文未能涉及的部分并且持续关注产品迭代升级消息,另外考虑到文中存在大量的命令操作,请确保实验环境下操作的安全性和可控性,严格按照说明执行各项任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值