LLM应用较之于传统软件开发有范式改变,与传统软件只要代码正确,功能特性就能表现出一致稳定的特点相比,在LLM应用开发中,我们常常面临一个很大问题就是LLM对提示的措辞异常敏感,稍不注意可能之前运行良好的应用,瞬间垮塌,这样的特性带来的影响就是开发者在面对产品测试、功能扩展、模型升级,长尾场景处理等情况时被恐惧萦绕,变得谨小慎微。这就像是面对一个知识渊博但脾气古怪的朋友,需要小心翼翼,稍微改变问题的说法,就可能得到完全不同的反应。
例如,在进行电影评价时,"这部电影好看吗?"和"请评价这部电影的质量"这两个看似相似的问题,可能会导致AI给出截然不同的回答。更令人困扰的是,每次模型更新后,它对这些问题的理解又可能发生变化。这种不稳定性严重影响了LLM在实际应用中的可靠性。
一、基于意图的提示校准 (IPC)
为了解决这一棘手问题,研究人员提出了一种创新方法,名为"基于意图的提示校准"(Intent-based Prompt Calibration, IPC)。它配套项目也已开源包含完整的使用方法和示例,名为“AutoPrompt”,这个方法旨在训练AI更好地理解人类的真实意图,不管问题如何表述,都能给出符合预期的回答。
IPC的工作原理是这样的:
-
生成合成边角case:IPC会创造出一些想出一些棘手的问题或场景,类似于为AI设置不常见的难题让它学习。比如在电影评论分类任务中,系统可能会生成这样的评论:"这部电影制作精良,但情节令人失望。"这种模棱两可的评论能够测试AI是否真正理解了评价的本质,而不是简单地依赖关键词。
-
小数据量优化:IPC的一个显著优势是它能够通过少量但精心设计的样本(通常只需50个左右)来有效优化提示。这大大降低了数据收集和标注的成本,使得该方法更适用于实际场景。
-
适应性强:IPC的设计既适用于分类任务(如判断电影好坏),也适用于生成任务(如撰写影评)。对于生成任务,IPC会先优化一个排序提示,然后用这个排序器来优化生成任务的提示。
-
持续迭代优化:IPC采用循序渐进的方法。它会反复测试AI的表现,分析结果,然后提出改进建议。这个过程使用了元提示(meta-prompt)来指导LLM分析当前提示的性能并提出优化方案。
以下是IPC方法的一个具体工作流程示例,展示了系统如何通过迭代生成具有挑战性的样本并优化提示词,整个过程只需要用户提供初始的任务描述和提示词,系统就能自主完成优化过程,大大简化了提示词工程的复杂性。
二、实验设计与结果
研究者们设计了一系列严谨的实验来评估IPC的性能。这些实验涵盖了多个任务和数据集,以确保结果的可靠性和普适性。
1. 分类任务实验
研究者选择了三个具有代表性的分类任务:剧透检测(Spoiler detection)、情感分析(Sentiment analysis)和家长指导(PG)评级(Parental Guidance (PG) detection)。每个任务都使用了50个训练样本和1000个测试样本。实验比较了IPC与几种先进的基线方法,包括手工简单提示(Initial)、OPRO(Optimization by PROmpting)[3]和PE[4]。
结果显示,IPC在所有任务中都取得了最佳或接近最佳的性能,更值得注意的是,IPC在多次运行中表现出极低的方差,证明了其优异的稳定性。
2. 生成任务实验
研究者还设计了一个复杂的电影评论生成任务,要求模型生成"热情、可靠且符合给定电影描述"的评论。这个任务特别具有挑战性,因为它需要模型在多个维度上表现出色。
实验采用GPT-4对生成的评论进行评分(1-5分)评估生成质量,结果显示:
IPC生成的评论平均得分为4.8,显著高于其他方法(如OPRO的4.3和PE的4.1)。
同时,研究者实验表明,尽管IPC需要多轮迭代,但由于其高效的设计,总体计算成本仍然可控,使用 GPT-4 Turbo,这种优化通常只需几分钟即可完成,成本低于 1 美元。
这些时间远低于传统的微调方法,使得IPC在实际应用中更具可行性。研究团队提供了测试案例[3],感兴趣的读者可以实测。
结论
IPC方法有效解决了LLM在实际应用中对提示敏感的挑战,提高了模型在不同提示词相同意图下的一致性,并且在不同类型的任务和各种LLM上具有广泛的适应性。通过生成合成的边界案例和迭代优化过程,IPC不仅提高了模型的性能,还增强了其可靠性和可解释性。
正是如此,这项技术的出现,将能够很好的解决当下LLM应用开发的痛点,进而使得LLM应用在开发效率及运行稳定性上提升一步。
如何学习大模型?
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】
如有侵权,请联系删除