百度推出LLMRec框架,用大语言模型打造图增强推荐系统

一、Introduction

推荐系统需要理解用户偏好,不仅要分析历史交互行为,还需整合与用户和内容相关的丰富辅助信息。现代推荐系统如Netflix利用内容属性、用户画像和多模态特征,这些特征提供了刻画用户偏好的多种方式。然而,这些方法面临数据稀疏性和冷启动问题,导致数据噪声、数据异质性和数据不完整性。数据噪声会引入无效信息,影响模型的学习效果。数据异质性会导致偏斜分布,影响模型的准确性。数据不完整性会削弱模型捕捉用户和内容特征的能力,影响推荐的准确性。

为了解决这些问题,我们提出了 LLMRec,结合三种策略增强交互图:i) 加强用户-内容交互边,ii) 提升内容属性建模,iii) 构建用户画像。为解决前两个问题,我们设计了一种基于LLMs的贝叶斯个性化采样算法,以及去噪数据增强机制。我们的方法已在真实世界数据集上进行评估,显示出优越性能。

二、Methodology

1、LLMs as Implicit Feedback Augmentor

面对隐式反馈的稀缺性,我们利用LLM作为知识感知的采样器,从自然语言角度采样用户-内容对的训练数据。这增加了潜在的有效监督信号,并通过整合上下文知识来更好地理解用户偏好。

在这里插入图片描述

2、LLM-based Side Information Augmentation

User Profiling & Item Attribute Enhancing

利用知识库和LLM的推理能力,我们提出通过用户历史交互和物品信息来总结用户画像,以克服隐私限制。此外,基于LLM的物品属性生成旨在创建统一且信息丰富的物品属性。我们的基于LLM的辅助信息增强范式包括两个步骤:

「用户/内容信息精炼」 通过从数据集的交互和辅助信息中衍生的提示信息,我们利用大语言模型(LLM)生成用户和内容属性,这些属性原本并不包含在数据集中。具体示例如图所示。

在这里插入图片描述

Side Information Incorporation

在获得增强的用户/内容辅助信息后,需要有效的整合方法。LLMRec 包括一个标准流程:(1)增强语义投影,(2)协作上下文注入,和(3)特征整合。如下:

在这里插入图片描述

3、Training with Denoised Robustification

Augmented Optimization with Noise Pruning

在这里插入图片描述

Enhancing Augmented Semantic Features via MAE

在这里插入图片描述

Datasets.

我们使用公开可用的数据集进行实验,即Netflix和MovieLens,其中包含多模态的辅助信息。

4、Performance Comparison

表比较了我们提出的LLMRec 方法与基线方法。

「整体模型优越性能」。我们的LLMRec 在显式增强用户-物品交互边和提升辅助信息质量方面优于基线方法。这一改进突显了我们模型的优势和框架的优势。

「辅助信息整合的有效性」。辅助信息的整合显著增强了推荐引擎的能力。方法如MMSSL和MICRO因其有效利用多种模态的辅助信息和GNNs而表现出色。相比之下,仅使用有限内容的方法如VBPR和CF架构如NGCF,其结果显著降低。这突显了有价值内容的重要性。

「不准确的增强导致有限的收益」。现有的方法如LATTICE、MICRO等利用辅助信息进行数据增强,但其表现提升有限。这可以归因于两个主要原因:(1) 用同质关系增强辅助信息可能会引入噪声,从而影响用户偏好的精确性。(2) 这些方法通常不直接增强用户-物品交互数据,而是通过间接方式。

「优于SSL方法的优势」。自监督模型如MMSSL和MICRO在通过SSL信号解决稀疏性方面表现出希望,但其性能未超过我们的LLMRec。我们通过直接建立BPR三元组明确解决了训练数据的稀缺性。

论文:https://arxiv.org/pdf/2311.00423


三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值