今天分享Perplexity!
“Where knowledge begins.”
- 知识起源
这是Perplexity的使命:为用户节省时间,提供精确知识。
Perplexity团队最近推出的Pro Search功能,能够通过多步推理来解答复杂且微妙的问题。
与适合即时提问的快速搜索不同,这种高级模式能够帮助学生、研究人员和企业获得准确且相关的答案。
非常惊艳的是,即便是提升了系统复杂度,但是由于出色的用户体验、架构设计,他们在速度和准确性获得了一个平衡。
一、传统搜索的局限性
在处理需要连接多个概念或提取详细信息的复杂用户问题时,传统搜索引擎结果比较难令人满意。
比如,当搜索"武汉东湖比杭州西湖大多少?"这样的问题时,不仅需要分别确认东西湖面积,还要在确定最终的差值。
这正是Perplexity Pro Search的优势所在。它的AI Agent能够分解多步骤问题,提供条理清晰的事实答案。用户无需翻阅大量搜索结果,就能直接从Perplexity Pro Search获得最相关信息的概括。
事实上,随着越来越多的用户发现其快速高效解答复杂问题的新功能,Perplexity Pro Search的查询量在近几个月增长超过50%。
二、架构
规划与执行的分步实现
Perplexity Pro的AI Agent将规划和执行分开处理,这种方式在多步搜索中取得了更好的效果。
当用户提交查询时,AI会制定一个回答问题的分步计划。对于计划中的每一步,系统会生成并执行一系列搜索查询。这些步骤按顺序执行,前面步骤的结果会传递给后续步骤。搜索查询会返回一系列文档,这些文档经过分组后筛选出最相关的内容。然后,这些高度相关的文档会被传递给LLM生成最终答案。
此外,Perplexity Pro Search还支持代码解释器等专业工具,使用户能够即时进行计算或文件分析,同时还包含了Wolfram Alpha等数学评估工具。
三、提示工程
通过平衡提示词长度来实现快速准确的响应
Perplexity运用多种语言模型来处理网络搜索任务,让用户能够根据具体问题选择最适合的模型。考虑到每个语言模型对提示的处理和理解方式都不尽相同,Perplexity在后端为每个模型量身定制了专属提示词。
为了更好的模型效果,Perplexity采用了少样本提示示例和思维链等技术。少样本示例有助于提高模型的推理行为。在构建少样本示例时,并且维持适当的提示长度至关重要。在制定语言模型应遵循的规则上,也经过了多轮迭代。
“对于模型来说,遵循过于复杂的提示指令较为困难。每次修改提示后,我们都需要进行查询测试,不仅要确保最终输出合理,中间步骤也必须合理。” 通过保持系统提示规则的简单明确,Perplexity降低了模型理解任务和生成相关响应的认知负担。
四、评估
产品智能程度的提升
在推出Pro Search升级版之前,Perplexity依靠答案质量指标和内部实践测试。团队通过对各类查询进行测试,并与其他AI产品的答案进行对比来进行人工评估。在向用户发布之前,检查中间步骤的能力对于识别常见错误起到了关键作用。
为了扩大评估规模,Perplexity收集了大量问题,并使用LLM作为评判标准对答案进行排名。同时,团队还对用户进行了A/B测试,以评估他们对产品不同配置的倾向,比如在不同模型间权衡延迟和成本。当产品体验在答案质量和用户体验方面都令团队满意后,产品才正式发布。
五、用户体验
设计更好的等待体验
团队面临的最大挑战之一是设计Perplexity Pro Search的用户界面。研究发现,如果产品能够显示中间进度,用户更愿意等待结果。
这促使团队开发了一个展示计划逐步执行的交互式界面。他们改进了可展开的部分,允许用户点击单个步骤查看搜索详情。他们还引入了悬停查看引用功能,用户可以查看来源片段,并通过点击在新窗口中打开。
“在用户产生好奇心之前,不要过度展示信息。只有当他们真正感兴趣时,再满足他们的好奇心。” 团队通过多次迭代,确保用户界面在简洁性和实用性之间达到最佳平衡。
六、最后
跟随好奇心的搜索体验
Perplexity的Pro Search代表了AI驱动搜索和问答系统的重大进步。通过将复杂查询分解为可管理的步骤,并提供透明、交互式的界面,Perplexity创造了一个能够跟上用户好奇心节奏的强大工具。
“在产品设计时必须以用户为中心,因为我们的用户群体对AI系统的熟悉程度差异巨大。有些是专家,有些则是AI搜索界面的新手——因此我们必须确保能为所有用户,无论其专业水平如何,都创造积极的使用体验。”
七、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】