什么是Agent?Agent的常见应用场景?如何学习AI Agent?

一、什么是Agent?

AI Agent(智能体) 是一种能利用大模型进行自主的任务规划、决策与执行的系统。它的核心思路是让人工智能不仅能回答问题,还能像人一样主动完成一系列关联性的任务;不仅有聪明的“大脑”,还有灵活的“手脚”,必要的时候还会使用“工具”。

如果说大模型像一位百科全书式的学者,而AI Agent就像一个“办事能力强的大管家”。这位管家会根据你的需求,把任务拆解成多个步骤,并主动找到资源或工具来完成。比如这个任务:

“对比A公司与我公司产品的差异,把结果发送到我邮箱。“

Agent会借助大模型规划任务步骤并执行:

  1. 先从互联网搜索A公司产品信息(使用Web搜索工具)
  2. 再从企业知识库检索我公司信息(使用本地查询工具)
  3. 生成对比报告(让大模型完成)
  4. 发送邮件到邮箱(使用邮件发送工具)

可以看到,基于大模型的AI Agent,就是把强大的语言模型和一套可以主动行动的机制结合起来,让它不仅能“懂”能“想”,还会“做”。

二、Agent的常见应用场景?

AI Agent可以在大量的领域与场景下展现出非凡的能力,包括但不限于个人助理、客户服务、市场营销、决策支持、游戏仿真、智能家居、无人驾驶、机器人等。

1.智能客服 比如一家公司需要全天候解答客户问题。AI Agent可以根据客户问题调用大模型生成答案,还能主动查询库存信息、处理订单甚至提供物流状态。

2.编程助手 开发人员需要解决某个技术问题,AI Agent不仅能提供代码示例,还能直接运行代码,调试错误,甚至优化性能。

3.个人助理 Agent可以帮你管理日程、订餐、处理邮件、监控股票市场,并根据你的偏好提供个性化建议,而不只是回答问题。

4.智能家居 家庭中的Agent可以连接灯光、空调、安防摄像头等设备,根据家庭成员的指令与设定,主动调节环境,控制家具设备。

5.科学研究 在科研领域,AI Agent可以自动收集最新文献、设计实验流程、分析实验数据,并生成总结报告。

三、如何学习AI Agent?

这里给大家推荐一本《动手做AI Agent》书籍,这本书内容包括从技术框架到开发工具,从实操项目到前沿进展,通过带着读者动手做7个 功能强大的Agent,全方位解析Agent的设计与实现。

有需要这本《动手做AI Agent》书籍PDF文档,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】

第1章 何为Agent,为何Agent

1.1 大开脑洞的演讲:Life 3.0
1.2 那么,究竟何为Agent
1.3 Agent的大脑:大模型的通用推理能力
1.4 Agent的感知力:语言交互和多模态
1.5 Agent的行动力:语言输出和工具使用
1.6 Agent对各行业的效能提升
1.7 Agent带来新的商业模式和变革
1.8 小结
在这里插入图片描述

第2章 基于大模型的Agent技术框架

2.1 Agent的四大要素
2.2 Agent的规划和决策能力
2.3 Agent的各种记忆机制
2.4 Agent的核心技能:调用工具
2.5 Agent的推理引擎:ReAct框架
2.6 其他Agent认知框架
2.7 小结

在这里插入图片描述

第3章 OpenAI API、LangChain和LlamaIndex

3.1 何为OpenAI API
3.2 何为LangChain
3.3 何为LlamaIndex
3.4 小结

在这里插入图片描述

第4章 Agent 1:自动化办公的实现——使用Assistants API和DALL·E 3模型创作PPT

4.1 OpenAI公司的Assistants是什么
4.2 不写代码,在Playground中玩Assistants
4.3 Assistants API的简单示例
4.4 创建一个简短的虚构PPT
4.5 小结

在这里插入图片描述

第5章 Agent 2:多功能选择的引擎——通过Functions Calling调用函数

5.1 OpenAI中的Functions
5.2 在OpenAI Playground中定义Function
5.3 用Assistants API来实现Functions Calling
5.4 用ChatCompletion API来实现Tool Calls
5.5 小结

在这里插入图片描述

第6章 Agent 3:推理与行动的协同——使用LangChain中的ReAct框架实现自动定价

6.1 复习一下ReAct推理框架
6.2 LangChain中ReAct Agent 的实现
6.3 LangChain中的工具和工具包
6.4 通过create_react_agent创建鲜花定价Agent
6.5 深挖AgentExecutor的运行机制
6.6 小结
在这里插入图片描述

第7章 Agent 4:计划和执行的解耦——使用LangChain中的Plan-and-Execute智能调度库存

7.1 Plan-and-Solve策略的提出
7.2 LangChain中的Plan-and-Execute Agent
7.3 用Plan-and-Execute Agent实现物流管理
7.4 从单Agent到多Agent
7.5 小结
在这里插入图片描述

第8章 Agent 5:知识的提取与整合——使用Llama Index实现检索增强生成Agent

8.1 何为检索增强生成
8.2 RAG和Agent
8.3 用LlamaIndex的ReAct Agent来实现花语秘境财报检索
8.4 小结

在这里插入图片描述

第9章 Agent 6:GitHub的网红聚落——AutoGPT、BabyAGI、CAMEL和Generative Agents

9.1 AutoGPT
9.2 BabyAGI
9.3 CAMEL
9.4 小结

在这里插入图片描述

第10章 Agent 7:多Agent系统框架——AutoGen和MetaGPT

10.1 AutoGen
10.2 MetaGPT
10.3 小结

在这里插入图片描述

有需要这本《动手做AI Agent》书籍PDF文档,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值