首先需要说明的是Task不等于Thread,只是微软默认实现ThreadPoolTaskScheduler是依赖于线程池的,因为该类的可访问性为internal,所以我们在实际编码中无法直接在代码中new这么一个Scheduler出来,只能通过TaskScheduler.Default间接的来使用
好了上面好像偏题了,回到原题,为什么需要控制Task数量?假设有这样一个场景,有一批Task需执行,假设数量有1万,每个Task执行完毕均需1~5秒钟时间,如果用默认的TaskScheduler.Default,因为其MaximumConcurrencyLevel是Int32.MaxValue,也就是最大它允许2147483647个Task同时执行,试想下这么多TaskCreationOptions.LongRunning的Task在那里等待CPU调度执行,不管是对电脑,还是等待处理结果的人们,这都完全是个灾难!所以我们应该人为的控制下同时存在的Task数量,正确的说,应该是控制同时执行的Task数量
所以按这个思路扩散开去,我们完全可以在Task创建时进行控制,所以就有了下面的demo代码
static object lockObj = new object();
static int maxTask = 5;
static int currentCount = 0;
//假设要处理的数据源
static List<int> numbers = Enumerable.Range(5, 10).ToList();
private static void TaskContinueDemo()
{
while (currentCount < maxTask && numbers.Count>0)
{
lock (lockObj)
{
if (currentCount < maxTask && numbers.Count > 0)
{
Interlocked.Increment(ref currentCount);
var task = Task.Factory.StartNew(() =>
{
var number = numbers.FirstOrDefault();
if (number > 0)
{
numbers.Remove(number);
Thread.Sleep(1000);//假设执行一秒钟
Console.WriteLine("Task id {0} Time{1} currentCount{2} dealNumber{3}", Task.CurrentId, DateTime.Now, currentCount, number);
if (Rand() == 0)//模拟执行中异常
{
numbers.Add(number);//因为出现异常,所以这里需要将number重新放入集合等待处理
Console.WriteLine("number {0} add because Exception", number);
throw new Exception();
}
}
}, TaskCreationOptions.LongRunning).ContinueWith(t =>
{//在ContinueWith中恢复计数
Interlocked.Decrement(ref currentCount);
Console.WriteLine("Continue Task id {0} Time{1} currentCount{2}", Task.CurrentId, DateTime.Now, currentCount);
TaskContinueDemo();
});
}
}
}
}
private static int Rand(int maxNumber = 5)
{
return Math.Abs(Guid.NewGuid().GetHashCode()) % maxNumber;
}
虽然这代码定制性很强,而且不够美观,但测试下来的确可行,而且代码中还模拟了异常情况,执行结果如下
可以看到处理数字5时随机抽到了异常(中奖了……),而ContinueWith方法中的递归调用保证了数据最终一定会被处理
那有没有更简单、更通用的方法来实现同样的功能呢?答案是有的,MSFT.ParallelExtensionsExtras,其下载地址为:NuGet Gallery | MSFT.ParallelExtensionsExtras 1.2.0,该类库下的LimitedConcurrencyLevelTaskScheduler正是目前所需要的,下面来一段新的代码
static void LimitedTaskDemo()
{
var scheduler = new LimitedConcurrencyLevelTaskScheduler(maxTask);
for (var i = 0; i < numbers.Count; i++)
{
var number = numbers[i];
DoTask(number, scheduler);
}
}
static void DoTask(int number, TaskScheduler scheduler)
{
Action<object> act = obj =>
{
var sleepTime = Rand(5) + 1;
Thread.Sleep(sleepTime * 1000);
Console.WriteLine("Task id {0} Time{1} dealNumber{2} sleepTime {3} second", Task.CurrentId, DateTime.Now, obj, sleepTime);
if (Rand() == 0)//模拟执行中异常
{
Console.WriteLine("Exception at number {0}", obj);
throw new Exception();
}
};
Task.Factory.StartNew(act, number, CancellationToken.None, TaskCreationOptions.None, scheduler).ContinueWith((t, obj) =>
{
if (t.Status != TaskStatus.RanToCompletion)
{
DoTask(number, scheduler);
}
//Console.WriteLine(obj);
}, number);
}
其执行结果如下
相比前面的方法,LimitedConcurrencyLevelTaskScheduler书写明显更为舒适,毕竟不再需要控制Task数量了嘛,同时并发运行的Task由Scheduler来进行控制
2021-05-08补充:`Semaphore.WaitOne`信号量也可以用于限制最大并发数,当最大信号量设置为1时也可以用于限制在`await`之前进行锁的情况,因为lock是无法锁住`await`部分代码的,会产生编译错误
2022-02-17补充:Additonal TaskSchedulers