题目描述
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
输入
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
输出
输出一行一个数,表示上帝给这棵树的分数。
样例输入
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
样例输出
8
题目挺不人道的。题干中都说了S为非空集合,但是对于所有点的评分都是负数的情况,是可以不选的,也就是结果为0.这又是为什么呢?
思路:树形dp的基础题型,对于以x为顶点的子树,我们记录的这这棵子树中的最大价值,并且返回给父节点。如果这个最大价值是正数,就加上,否则就不加。
代码如下:
#include<bits/stdc++.h>
#define ll long long
#define inf 1e18
using namespace std;
const int maxx=1e5+100;
struct edge{
int to,next;
}e[maxx<<1];
int head[maxx<<1];
ll cor[maxx];
int n,tot;
ll ans=0;
inline void init()
{
memset(head,-1,sizeof(head));
tot=0;
}
inline void add(int u,int v)
{
e[tot].to=v,e[tot].next=head[u],head[u]=tot++;
}
inline ll dfs(int u,int f)
{
ll _max=(ll)cor[u];
for(int i=head[u];i!=-1;i=e[i].next)
{
int to=e[i].to;
if(to==f) continue;
ll sum=dfs(to,u);
if(sum>0) _max+=sum;
}
ans=max(ans,_max);
return _max;
}
int main()
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++) scanf("%lld",&cor[i]);
int x,y;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(1,0);
cout<<ans<<endl;
return 0;
}
努力加油a啊,(o)/~