题意:
给定一个长度为 n 的数组a[ ],并且有两种操作:
①将前 i 个数全都加上 x;
②将前 i 个数全都 mod x
要求用不超过 n+1 次操作,使得数组 a[ ] 严格单调递增。
思路:
对于每个数a[ i ],实施操作 a[ i ]%( a[ i ]-i ),使a[ i ] = i,最终序列便是 1~n 的排列,当然严格单调递增啦。
但是我们要怎么做呢使得当a>b时。a%(a-b)==b呢?
这里有个结论那就是a>2b。
所以我们就只需要每个数先加个max(i)然后按顺便mod掉每个数就变成1~n的全排列了
然后这里的i=2000,所以随便设立一个大于2i的最大值就能过
#include <iostream>
#include<stdio.h>
using namespace std;
int a[2005];
int main()
{
int n;
scanf("%d",&n);
printf("%d\n1 %d 40001\n",n+1,n);
for (int i=0;i<n;i++)
scanf("%d",&a[i]);
for (int i=0;i<n;i++)
printf("2 %d %d\n",i+1,a[i]+40001-i);
}