OD华为机试 19

分苹果

描述

A、B两个人把苹果分为两堆,A希望按照他的计算规则等分苹果,他的计算规则是按照二进制加法计算,并且不计算进位 12+5=9(1100 + 0101 = 9),B的计算规则是十进制加法,包括正常进位,B希望在满足A的情况下获取苹果重量最多。

输入苹果的数量和每个苹果重量,输出满足A的情况下B获取的苹果总重量。

如果无法满足A的要求,输出-1。

输入描述:
输入第一行是苹果数量:3
输入第二行是每个苹果重量:3 5 6

输出描述:
输出第一行是B获取的苹果总重量:11

测试用例
示例1:
输入

3
3 5 6

输出

11

示例2:
输入

8
7258 6579 2602 6716 3050 3564 5396 1773

输出

35165

法一

import java.util.*;

public class Main {
    public static final int INVALID_NUM = -1;
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while (sc.hasNext()) {
            int num = Integer.parseInt(sc.nextLine());
            List<Integer> list = new ArrayList<>();
            for (int i = 0 ; i < num ; i++) {
                list.add(sc.nextInt());
            }
            //一个计数a,a要求相加之后对等,因为采用二进制而不进位,所以等同于异或
            int aWeight = 0;
            int bWeight = 0;
            int min = Integer.MAX_VALUE;
            for (int i : list) {
                aWeight ^= i;
                bWeight += i;
                min = Math.min(i, min);
            }

            if (aWeight == 0) {
                System.out.println(bWeight - min);
            } else {
                System.out.println(INVALID_NUM);
            }
        }
    }
}
算法实现

首先,如果能满足 A,那么所有苹果全部 “异或”操作后,必然是0 。
这是有一个比较巧妙的地方在于:

二进制加法不进位情况,恰恰就是异或的运行规则。

如例一所示:5(101) + 6 (110) = 3(011),
那么等式左边转为二进制后,一定是要和右边一模一样,每一位都一样,这样才能保证等分,因此我们可以先用异或,算出等式左边,然后此时如果再用一次异或来与等式右边比较,异或运行规则是,这一位相同,则结果是0,这一位不同,则结果是1。
其次,要想 B 最多,只需要将这堆苹果中,最小的一个给A即可。因为所有苹果异或的结果是0,所以任意拿出1个,分成另一堆, 那么剩下的就是B 想要的重量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值