Pandas主要统计特征函数:
| 方法名 | 函数功能 |
|---|---|
| sum() | 计算数据样本的总和(按列计算) |
| mean() | 计算数据样本的算术平均数 |
| var() | 计算数据样本的方差 |
| std() | 计算数据样本的标准差 |
| corr() | 计算数据样本的Spearman(Pearman)相关系数矩阵 |
| cov() | 计算数据样本的协方差矩阵 |
| skew() | 样本值的偏度(三阶矩) |
| kurt() | 样本值的峰度(四阶矩) |
| describe() | 给出样本的基本描述(基本统计量如均值、标准差等) |
cum累积计算函数
- cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()
| 方法名 | 函数功能 |
|---|---|
| cumsum() | 依次给出前1、2、… 、n个数的和 |
| cumprod() | 依次给出前1、2、… 、n个数的积 |
| cummax() | 依次给出前1、2、… 、n个数的最大值 |
| cummin() | 依次给出前1、2、… 、n个数的最小值 |
计算出前n项和:
D=pd.Series(range(0,20))
D.cumsum()
0 0
1 1
2 3
3 6
....
19 190
dtype: int64
rolling滚动计算函数
- rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。
| 方法名 | 函数功能 |
|---|---|
| rolling_sum() | 计算数据样本的总和(按列计算) |
| rolling_mean() | 数据样本的算术平均数 |
| rolling_var() | 计算数据样本的方差 |
| rolling_std() | 计算数据样本的标准差 |
| rolling_corr() | 计算数据样本的Spearman(Pearman)相关系数矩阵 |
| rolling_cov() | 计算数据样本的协方差矩阵 |
| rolling_skew() | 样本值的偏度(三阶矩) |
| rolling_kurt() | 样本值的峰度(四阶矩) |
依次对相邻两项求和:
pd.rolling_sum(D,2)
0 NaN
1 1.0
2 3.0
3 5.0
4 7.0
....
19 37.0
dtype: float64
参考地址:
《利用Python进行数据分析》
本文介绍了Pandas库中的两种统计功能——cum累积计算和rolling滚动计算。cum函数用于计算DataFrame或Series对象的前n项和,如D.cumsum();而rolling函数通过pd.rolling_mean(D,k)实现每k列的滚动平均值计算,帮助进行连续数据的统计分析。"
116680997,10548397,理解与计算儒略日:Linux下的时间转换,"['时间计算', 'Linux', '天文学', '日期转换', 'MATLAB']
629

被折叠的 条评论
为什么被折叠?



