数据结构 —— 栈的定义、存储结构和基本操作

本文深入解析了栈这一数据结构,包括栈的定义、主要特点、存储结构(顺序栈和链栈),以及栈在括号匹配和表达式转换中的应用。详细介绍了栈的操作如进栈、出栈的代码实现,以及如何通过栈解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、栈的定义


  • 栈是一种只能在一段进行插入或删除操作的线性表。
  • 栈顶:允许进行插入或删除操作的一端,由一个栈顶指针来指示。
  • 栈底:相对于栈顶的另一端,是固定不变的。
  • 栈的主要特点就是先进后出。依照存储结构可分为:顺序栈和链式栈
  • 对于非连续的输入输出,出栈序列中每一个元素后面所有比他小的元素组成一个递减序列。
  • 合法出栈序列个数 f ( n ) = C 2 n n / ( n + 1 ) f(n)=C_{2n}^n/(n+1) f(n)=C2nn/(n+1)

二、顺序栈


在这里插入图片描述

  1. 栈空状态:s.top==-1
  2. 栈满状态:s.top=maxSize-1
  3. 非法状态(上溢和下溢):栈满就是一种继续入栈就会上溢的状态,对应的栈下溢就是栈空的时候继续出栈所造成的结果。

顺序栈定义

// 顺序栈定义
typedef struct 
{
	int data[maxSize];
	int top;	// 栈顶指针
}SqStack;

初始化顺序栈

// 初始化顺序栈
void initSqStack(SqStack &s)
{
	s.top=-1;
}

判断顺序栈是否为空

// 判断顺序栈是否为空
int isEmpty(SqStack s)
{
	if(s.top==-1)
		return 1;
	else
		return 0;
}

进栈代码

// 进栈代码
int push(SqStack &s,int x)
{
	if(s.top==maxSize-1)
		return -1;	// 若栈满,则进栈失败
	s.top++;
	s.data[s.top]=x;	// 先移动指针,再进栈
	return 0;
}

出栈代码

// 出栈代码
int pop(SqStack &s,int &x)
{
	if(s.top==-1)
		return -1;	// 若栈空,则出栈失败
	x=s.data[s.top];
	s.top--;	// 先出栈,再移动指针
	return 0;
}

三、共享栈


利用栈底位置相对不变的特性,可让两个顺序栈共享一个一维数据空间,将两个栈的栈底别设置在共享空间的两端,两个栈顶向共享空间的中间延伸。
在这里插入图片描述
两个栈的栈顶指针都指向栈顶元素,top 0 = -1 时 0 号栈为空,top1= Maxsize 时 1 号栈空。仅当两个栈顶指针相邻(top 1-top 0=1)时,判断为栈满。当0号栈进栈时top0先加再赋值,1号栈进栈时top1先减1再赋值;出栈时则刚好相反。

共享栈是为了更有效地利用存储空间,两个栈的空间相互调节,只有在整个存储空间被占时才发生上溢。其存取数据的时间复杂度均为O(1),所以对存取效率没有什么影响。

四、链栈


在这里插入图片描述

  1. 栈空状态:lst->next==NULL
  2. 栈满状态:假设内存无限大,此时不存在栈满的情况

链栈结点定义

// 链栈结点定义
typedef struct LNode
{
	int data;
	struct LNode *next;
}LNode;

链栈初始化

// 链栈初始化
void initStack(LNode *&lst)
{
	lst=(LNode*)malloc(sizeof(LNode));
	lst.next=NULL;
}

判断栈空的代码

// 判断栈空的代码
int isEmpty(LNode *lst)
{
	if (lst->next==NULL)
	{
		return 1;
	}
	else
		return 0;
}

进栈代码

// 进栈代码
void push(LNode *&lst,int x)
{
	LNode *p;
	p=(LNode*)malloc(sizeof(LNode));
	p->next=NULL;	// 为进栈元素申请结点空间
	p->data=x;

	p->next=lst->next;
	lst->next=p;
}

出栈代码

// 出栈代码
int pop(LNode *&lst,int &x)
{
	if(lst->next==NULL)
		return -1;	// 如果栈为空,出栈失败
	LNode *p;
	p=lst->next;
	x=p->data;
	lst->next=p->next;
	free(p);
	return 0;
}

五、栈的应用

(1)括号匹配

算法思想:

(1)初始一个空栈,顺序读入括号。

(2)若是右括号,则与栈顶元素进行匹配

  • 若匹配,则弹出栈顶元素并进行下一个元素
  • 若不匹配,则该序列不合法

(3)若是左括号,则压入栈中若全部元素

(4)遍历完毕,栈中非空则序列不合法

示例:4+(2+8)*[5/(9-7)]

(1)检测到第一个括号“(”;

(2)检测到第二个括号“)”,说明子表达式 “4+(2+8)” 已完成匹配;

(3)检测到第三个括号“[”;

(4)检测到第四个括号“(”,与(3)中的括号不匹配,但由于同是左括号,可以继续匹配;

(5)检测到第五个括号“)”,由括号的作用可知,后来的括号比先来的括号优先级高,因此与(4)中括号匹配;

(6)检测到第六个括号“]”,由于原来优先级更高的括号已完成,因此与(3)中括号匹配。至此所有括号匹配完成。

(2)中缀表达式 → 后缀表达式

算法思想:

在这里插入图片描述

(3)表达式求值

算法思想:

(1)顺序扫描表达式的每一项,然后根据它的类型做如下相应操作

  • 若该项是操作数,则将其压入栈中;
  • 若该项是操作符<op>,则连续从栈中退出两个操作数Y和X,形成运算指令X<op>Y,并将计算结果重新压入栈中。

(2)当表达式的所有项都扫描并处理完后,栈顶存放的就是最后的计算结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值