R-基本数据类型

常见的数据结构

 

  • 向量 c() # 一维
  • 矩阵 matrix() # 二维
  • 数组 array() # 多维
  • 因子factor()
  • 列表list()
  • 数据框 data.frame()

常见的数据类型

  • integer 整型
  • character 字符型
  • numeric 数值型(double)
  • logical 逻辑型
  • NULL
  • NA missing value

向量

name = c("li", "shi", "wu", "zhang", "feng")
typeof(name)  # "character"
print(name)
id = c(1, 2, 3, 4, 5, 6)
typeof(id) # "double"
cloth = c(FALSE, TRUE, FALSE, TRUE, FALSE, FALSE)
typeof(cloth) # "logical"
cloth[1] # FALSE
id[2:5] # 2 3 4 5
name[-2] # "li"    "wu"    "zhang" "feng"  删除2对应的元素
name[-2:-3] # "li"    "zhang" "feng" 删除2到3对应的元素
name[c(F,T,F,T,F,T)] # "shi"   "zhang" NA  返回为T对应的元素,第六个没有元素返回来NA

matrix矩阵

functyions:

  • matrix()
  • ncol()
  • nrow()
  • rownames()
  • colnames()
x=matrix(c(1:9),ncol=3,nrow=3)

image.png

rownames(x)=c("A","B","C")
colnames(x)=c("C","D","E")

image.png

x["A", "C"] # 1
x[1, 1]     # 1
ncol(x) # 3
nrow(x) # 3
dim(x) # 3 3

array数组

xx  = array(1:24, c(3, 4, 2)) # 生成3×4×2维的数组
yy  = array(1:36, c(2, 3, 3, 2)) # 生成2×3×3×2维的数组
xx=1:24 # 对xx重新赋值,生成1-24排列的NULL维数组
dim(xx) = c(3, 4, 2) # 对xx的维度调整,把上面的NULL维度改成3×4×2维度的数组
zz = 1:10  #同理生成1-10的NULL维数组
dim(zz) = c(2, 5) # 维度调整
dim(xx)    # 没有等号就是返回对应变量的维度值
dim(yy)
dim(zz)

factor因子

Dragon_gender =factor(c("female","male","male","male","male","female"))

image.png

Dragon_size=factor(c("L","XL","XL","XXL","XXXL","L"),levels=c("S","M","L","XL","XXL","XXXL"))

image.png

list列表

Dragon=list(name=Dragon_name,id=Dragon_id,cloth=Dragon_cloth,gender=Dragon_gender,size=Dragon_size) #直接命名
Dragon

image.png

names(Dragon) # 输出name,id, cloth, gender, size
length(Dragon) # 5
Dragon=list(Dragon_name, Dragon_id, Dragon_cloth, Dragon_gender,Dragon_size)
print(Dragon) #输出自动数字编码的结果

image.png

names(Dragon)= c("name", "id", "cloth", "gender", "size") #为编码命名
Dragon$note=c(9,9) #新增加note成员
# 另一种生成list方法
> Dragon = list()
> Dragon[[1]] = Dragon_name
> Dragon[[2]] = Dragon_id
> Dragon[[3]] = Dragon_cloth
> Dragon[[4]] = Dragon_gender
> Dragon[[5]] = Dragon_size
> names(Dragon)=c("name", "id", "cloth", "gender", "size")
> Dragon

访问数据

Dragon[1]      # 带内name  
Dragon[[1]]    # name的内部数据
Dragon[[1]][4] # name的内部数据的第四个元素

Dragon$size
Dragon["id"]
Dragon[1:2]
Dragon[c("name", "id")]

image.png

image.png

data.frame

  • 相同的数据类型
  • 唯一的行或者列名字(rownames, colnames)
  • data.frame的行是一个data.frame
  • as.data.frame(****) list matrix等可以通过它专程data.frame
FraDragon = data.frame(name=Dragon_name,id=Dragon_id,cloth=Dragon_cloth,gender=Dragon_gender, size=Dragon_size)

image.png

 names(FraDragon)

out:[1] "name" "id" "cloth" "gender" "size"

rownames(FraDragon)= FraDragon$name

image.png

colnames(FraDragon)

out:[1] "name" "id" "cloth" "gender" "size"

FraDragon=FraDragon[, -1] # 删除第一列
FraDragon["li",]                    # 查找行为li,列为所有
 FraDragon[,"size"]              # 查找行为所有,列为size
FraDragon["li","size"]          # 查找行为li,列为size
FraDragon=as.data.frame(Dragon)    # 把list类型转成data.frame类型
展开阅读全文
©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读