机器翻译自动评估-BLEU算法详解

机器翻译自动评估-BLEU算法详解

      版权声明:本文为博主原创文章,未经博主允许不得转载。          https://blog.csdn.net/qq_31584157/article/details/77709454        </div>
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
                          <div id="content_views" class="markdown_views prism-atom-one-dark">
        <!-- flowchart 箭头图标 勿删 -->
        <svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
          <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
        </svg>
        <p></p><h3 id="bleu综述"><a name="t0"></a><strong>BLEU综述:</strong></h3><h3 id="title"></h3><p></p>

  BLEU实质是对两个句子的共现词频率计算,但计算过程中使用好些技巧,追求计算的数值可以衡量这两句话的一致程度。
  BLEU容易陷入常用词短译句的陷阱中,而给出较高的评分值。本文主要是对解决BLEU的这两个弊端的优化方法介绍。
  
  参考文献有二:
  - 《BLEU: a Method for Automatic Evaluation of Machine Translation 》
   - WIKIPEDIA中对BLEU的讲解
  


  

一.BLEU是什么?

  首先要看清楚我们本篇文章的主人公是怎么拼写的——{B-L-E-U},而不是{B-L-U-E},简直了…..我叫了它两天的blue(蓝色)才发现原来e在u之前~~如果真要念出它的名字,音标是这样的:[blε][blε:](波勒)。
  
  BLEU的全名为:bilingual evaluation understudy,即:双语互译质量评估辅助工具。它是用来评估机器翻译质量的工具。当然评估翻译质量这种事本应该由人来做,机器现在是无论如何也做不到像人类一样思考判断的(我想这就是自然语言处理现在遇到的瓶颈吧,随便某个方面都有牵扯上人类思维的地方,真难),但是人工处理过于耗时费力,所以才有了BLEU算法。

  BLEU的设计思想与评判机器翻译好坏的思想是一致的:机器翻译结果越接近专业人工翻译的结果,则越好。BLEU算法实际上在做的事:判断两个句子的相似程度。我想知道一个句子翻译前后的表示是否意思一致,显然没法直接比较,那我就拿这个句子的标准人工翻译与我的机器翻译的结果作比较,如果它们是很相似的,说明我的翻译很成功。因此,BLUE去做判断:一句机器翻译的话与其相对应的几个参考翻译作比较,算出一个综合分数。这个分数越高说明机器翻译得越好。(注:BLEU算法是句子之间的比较,不是词组,也不是段落)
  
  BLEU是做不到百分百的准确的,它只能做到个大概判断,它的目标也只是给出一个快且不差自动评估解决方案。


二.BLEU的优缺点有哪些?

  优点很明显:方便、快速、结果有参考价值
  
  缺点也不少,主要有:

    1. 1.  不考虑语言表达(语法)上的准确性;
      2.  测评精度会受常用词的干扰;
      3.  短译句的测评精度有时会较高;
      4.  没有考虑同义词或相似表达的情况,可能会导致合理翻译被否定;


三.如何去实现BLEU算法?

  首先,“机器翻译结果越接近专业人工翻译的结果,则越好”——要想让机器去评判一句话机器翻译好坏,得有两件工具:

  1. 1. 衡量机器翻译结果越接近人工翻译结果的数值指标;
    2. 一套人工翻译的高质量参考译文;

  其次,规范一下说法——

  1. 1. 对一个句子我们会得到好几种翻译结果(词汇、词序等的不同),我们将这些翻译结果叫做 候选翻译集(candidate1, candidate2, ……);
    2. 一个句子也会有好几个 参考翻译(reference1, reference2, ……);
    3. 我们下面计算的比值,说白了就是精度,记做 pnpn, n代表n-gram, 又叫做n-gram precision scoring—— 多元精度得分(具体解释见3.2);
    4. 需要被翻译的语言,叫做源语言(source),翻译后的语言,叫做目标语言(target);
      

3.1 最开始的BLEU算法

  其实最原始的BLEU算法很简单,我们每个人都有意无意做过这种事:两个句子,S1和S2,S1里头的词出现在S2里头越多,就说明这两个句子越一致。就像这样子:similarity(‘i like apple’, ‘i like english’)=2/3。
  
  分子是一个候选翻译的单词有多少出现在参考翻译中(出现过就记一次,不管是不是在同一句参考翻译里头),分母是这个候选翻译的词汇数。
  请看下面这个错误案例:

Candidatethethethethethethethe
Reference1thecatisonthemat
Reference2thereisacatonthemat

计算过程:

  1. 1. 候选翻译的每个词——the,都在参考译文中出现,分子为7;
    2. 候选翻译一共就7个词,分母为7;
    3. 这个翻译的得分: 7/7 = 1!

  很明显,这样算是错的,需要改进一下。
  
  

3.2 改进的多元精度(n-gram precision)

  专业一点,上面出现的错误可以理解为常用词干扰(over-generate “reasonable”words),比如the, on这样的词,所以极易造成翻译结果低劣评分结果却贼高的情况。
  
  另外,上面我们一个词一个词的去统计,以一个单词为单位的集合,我们统称uni-grams(一元组集)。如果是这样{“the cat”, “cat is”, “is on”, “on the”, “the mat”},类似”the cat”两个相邻词一组就叫做bi-gram(二元组),以此类推:三元组、四元组、…、多元组(n-gram),集合变复数:n-grams。
  
  OK,上述算法问题其实处在分子的计算上,我们换成这个:

Countclipwi,j=min(Countwi,Refj_Countwi)Countwi,jclip=min(Countwi,Refj_Countwi)
在所有参考翻译里的综合截断计数;

  仍然看上表的举例,Ref1_Countthe=2Ref1_Count′the′=2
  
  分母不变,仍是候选句子的n-gram个数。这里分母为7。
  

  :这个地方的 分子截断计数 方法也不唯一,还有这样的:

Ref_Countwi=max(Refj_Countwi),i,j=1,2,3...Ref_Countwi=max(Refj_Countwi),i,j=1,2,3...

  
  其实 改进的n-gram精度得分可以用了衡量翻译评估的充分性和流畅性两个指标:一元组属于字符级别,关注的是翻译的充分性,就是衡量你的逐字逐字翻译能力; 多元组上升到了词汇级别的,关注点是翻译的流畅性,词组准了,说话自然相对流畅了。所以我们可以用多组多元精度得分来衡量翻译结果的。
  
  

3.3 改进的多元精度(modified n-gram precision)在文本段落翻译质量评估中的使用

  BLEU的处理办法其实还是一样,把多个句子当成一个句子罢了:

pn=ccandidatesngramcCountclip(ngram)ccandidatesngramcCountclip(ngram)pn=∑c∈candidates∑n−gram∈cCountclip(n−gram)∑c∈candidates′∑n−gram∈c′′Countclip(n−gram′)

  不要被这里的连加公式给欺骗了,它将候选段落的所有n-gram进行了截断统计作为分子,分母是候选段落的n-gram的个数。
  
  

3.4 将多个改进的多元精度(modified n-gram precision)进行组合

  在3.2提到,uni-gram下的指标可以衡量翻译的充分性,n-gram下的可以衡量翻译的流畅性,建议将它们组合使用。那么,应该如何正确的组合它们呢?
  
  没疑问,加总求和取平均。专业点的做法要根据所处的境况选择加权平均,甚至是对原式做一些变形。
  
  首先请看一下不同n-gram下的对某次翻译结果的精度计算:
  
这里写图片描述

  事实是这样,随着n-gram的增大,精度得分总体上成指数下降的,而且可以粗略的看成随着n而指数级的下降。我们这里采取几何加权平均,并且将各n-gram的作用视为等重要的,即取权重服从均匀分布。

pave=n=1Npwnn−−−−−−⎷Nn=1wn=1Nn=1wnexp(i=1Nwnlogpn)=exp(1Ni=1Nlogpn)pave=∏n=1Npnwn∑n=1Nwn=1∑n=1Nwnexp(∑i=1Nwn∗logpn)=exp(1N∗∑i=1Nlogpn)
为赋予的权重。

  对应到上图,公式简单表示为:

pave=exp(14(logp1+logp2+logp3+logp4))pave=exp(14∗(logp1+logp2+logp3+logp4))

  

3.5 译句较短惩罚(Sentence brevity penalty )

  再仔细看改进n-gram精度测量,当译句比参考翻译都要长时,分母增大了,这就相对惩罚了译句较长的情况。译句较短就更严重了!比如说下面这样:

Candidatethecat
Reference1thecatisonthemat
Reference2thereisacatonthemat

  显然,这时候选翻译的精度得分又是1(12+1212+12

  见上式,rr
  通过一次次的改进、纠正,这样的BLEU算法已经基本可以快捷地给出相对有参考价值的评估分数了。做不到也不需要很精确,它只是给出了一个评判的参考线而已

  

以上就是BLEU知识点的主要内容。欢迎指正、补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值