评分卡模型,用odds来校准概率(我的理解)

前言

评分卡模型建立时,样本的好坏比和实际好坏比是不一致的,原因有二:

1、产品本身坏样本少,抽样时会对坏样本进行过抽样或者好样本进行欠抽样

2、未获取全量的原始数据,样本中的好坏比无法反映真实的情况

评分卡模型预测的是坏样本的概率,好坏比使用的是坏样本量/好样本量

概率校准

1、需要一个目标好坏比odds1

它可以是抽样前的产品真实好坏比(对应情况1),也可以是行业平均水平(对应情况2)

2、建模样本好坏比odds

在sigmoid函数转换前,只需要在逻辑回归拟合出来的截距上再加一个ln(odds1/odds)即可,原因:逻辑回归中的截距是约等于好坏比的对数的,即:把ln(odds)抵消掉,得到实际好坏比ln(odds1)

ln(odds1/odds) = ln(odds1)-ln(odds)

3、校准分数段的好坏比

对好坏比进行一个sigmoid的反函数,加上ln(odds1/odds),再用sigmoid函数运算回来

案例

继续使用上篇的数据

评分卡模型阈值表(接上篇)-CSDN博客

  分组名称 本组客户 本组好客户 本组坏客户 好坏比(odds) 坏样本占比
0 [300-320) 15 4 11 2.75 73.33%
1 [320-340) 163 40 123 3.08 75.46%
2 [340-360) 257 97 160 1.65 62.26%
3 [360-380) 324 117 207 1.77 63.89%
4 [380-400) 357 163 194 1.19 54.34%
5 [400-420) 374 160 214 1.34 57.22%
6 [420-440) 533 228 305 1.34 57.22%
7 [440-460) 1124 585 539 0.92 47.95%
8<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值