《老饼讲解机器学习》https://www.bbbdata.com/text/67
目录
本文讲解评分卡的分数转换公式,和转换公式的原理推导。
具体实操例子和代码请参考:《评分卡实例:完整建模流程》《评分卡实例:完整建模代码》
一、评分卡的分数转换
(一)评分卡分数转换方式
在建模完成后,需要把模型转换成分数输出,评分卡不使用概率转换分数,而是用线性部分转换成分数
即 转成以下格式
pass: 这样做的好处是,每一个特征x的分数和就是总分,而如果用概率转分,则单个特征增加s分,总分并不增加s分。
(二) offset 和 factor计算公式:
(1) factor和 offset计算公式
(2)Score计算公式:
其中B,d,k,S代表:
B,d: odds为d时,评分为B
S,k: odds每降低 k倍时,分数提升S分
odds:,是坏客户的概率与好客户概率的比。
备注:如果 x 转换woe,则 WX+b 改为 W*woe+b
(三)实际计算过程
1.计算factor与offset
2.计算BaseScore和FetureScore
总得分即为,BaseScore加上每个特征的得分FetureScore
二、公式推导
(一) 线性部分的含义
由逻辑回归模型表达式:
可知线性部分
一般将
记为odds。即有:
(二) 通过设置odds确定Base和factor
odds = P/(1-P) 代表 是坏样本的概率与是好样本概率的比值。
我们假设odds为d时,评分为B,
且odds每提升k倍时,分数提升S分。
则可通过以上条件求得Base和factor.
(1) 由odds每降低k倍时,分数提升S分,可得
即
(2) 由odds为d时,评分为B,可得
即
(三) 总公式
总公式即为:
也即
如果之前X转为woe,则是
其中B,d,k,S代表:
B,d:odds为d时,评分为B
S,k:odds每提升k倍时,分数提升S分
附加说明:
由
也即可将分数拆为
与
三、常用设置
B,d,k,S一般设为 B=600,d = 50,S=20,k = 2
也即:
(1) odds每降低2倍(例如从50:1提升到25:1),分数提升20分。
(2) 当 odds=50:1时,分数是600分。
代入上式 ,即有
四、生产环境应用
(1) 生成特征分数映射表
先将所有变量的所有分组的分数都依公式算出,即得到每个特征每个分组的分数。
形成一张 特征-分组-分数映射表。
(2) 累计特征得分在使用时,只需判断各个特征对应的分数,再累计各特征得分,加上基础分即可。
相关文章