一个人的旅行

题目:

A - 一个人的旅行

题意:

中文不在多说,多个起点,将这多个起点与0之间的长度定为0,最后输出多个终点中最小的距离即可;

事实上这道题使用dijkstra很方便就可以得出,但是很久没有做类似的题目,想使用一下邻接表优化的spfa;

第一次代码:

//wa未找到原因

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<string.h>
using namespace std;
const int inf=0x3f3f3f3f;
int dis[1000005];
bool book[1000005];
int t,s,d;
int u[1000005],v[1000005],w[1000005];
int first[1000005],nextt[1000005];
void intt()
{
    memset(book,0,sizeof(book));
    memset(dis,0x3f,sizeof(dis));
    memset(first,-1,sizeof(first));
}
void solve()
{
    queue<int>q;
    q.push(1);
    dis[1]=0;
    book[1]=1;
    while(!q.empty())
    {
        int z=q.front();
        int k=first[z];
        while(k!=-1)
        {
            if(dis[v[k]]>dis[u[k]]+w[k])
            {
                dis[v[k]]=dis[u[k]]+w[k];
                if(book[v[k]]==0)
                {
                    q.push(v[k]);
                    book[v[k]]=1;
                }
            }
            k=nextt[k];
        }
        q.pop();
        book[z]=0;

    }
}
int main()
{
    int k;
    while(scanf("%d %d %d",&t,&s,&d)!=EOF)
    {
        intt();
        k=1;
        for(int i=1;i<=t;i++)
        {
            scanf("%d %d %d",&u[k],&v[k],&w[k]);
            nextt[k]=first[u[k]];
            first[u[k]]=k;
            k++;
            u[k]=v[k-1];
            v[k]=u[k-1];
            w[k]=w[k-1];
            nextt[k]=first[u[k]];
            first[u[k]]=k;
            k++;
        }
        int a;
        for(int i=0;i<s;i++)
        {
            scanf("%d",&a);
            u[k]=1;
            v[k]=a;
            w[k]=0;
            nextt[k]=first[u[k]];
            first[u[k]]=k;
            k++;
            u[k]=a;
            v[k]=1;
            w[k]=0;
            nextt[k]=first[u[k]];
            first[u[k]]=k;
            k++;
        }
        solve();
        //printf("123\n");
        int minn=inf;
        for(int i=0;i<d;i++)
        {
            scanf("%d",&a);
            minn=min(minn,dis[a]);
        }
        printf("%d\n",minn);
    }
    return 0;
}

第二次代码:

参考了一位大佬的

https://blog.csdn.net/lzyws739307453/article/details/98450040

代码:

//一个人的旅行

//一个人的旅行
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<queue>
#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1005;//段点数
bool book[maxn];
int dis[maxn],first[maxn],cnt;
struct node
{
    int u;//next
    int v,w;
    node(int uu=0,int vv=0,int ww=0):u(uu),v(vv),w(ww){}
}e[maxn*maxn];
inline void intt()
{
    cnt=0;
    memset(first,-1,sizeof(first));
    memset(book,0,sizeof(book));
    memset(dis,0x3f,sizeof(book));
}
inline void add(int u,int v,int w)
{
    e[++cnt]=node(first[u],v,w);
    first[u]=cnt;
}
void spfa()
{
    for(int i=0;i<1005;i++)
        dis[i]=inf;
    queue<int>q;
    q.push(0);
    dis[0]=0;
    book[0]=1;
    while(!q.empty())
    {
        //printf("12\n");
        int u=q.front();
        q.pop();
        book[u]=0;
        for(int i=first[u];~i;i=e[i].u)
        {
            int v=e[i].v;
            int w=e[i].w;
            if(dis[v]>dis[u]+w)
            {
                dis[v]=dis[u]+w;
                if(book[v]==0)
                {
                    q.push(v);
                    book[v]=1;
                }
            }

        }

    }
}
int main()
{
    int t,s,d;
    int u,v,w;
    while(scanf("%d %d %d",&t,&s,&d)!=EOF)
    {
        intt();
        for(int i=0;i<t;i++)
        {
            scanf("%d %d %d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }
        int a;
        for(int i=0;i<s;i++)
        {
            scanf("%d",&a);
            add(a,0,0);
            add(0,a,0);
        }
        spfa();
        //printf("123\n");
        int minn=0x3f3f3f3f;
        for(int i=0;i<d;i++)
        {
            scanf("%d",&a);
            minn=min(minn,dis[a]);
        }
        printf("%d\n",minn);
    }
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>