小白笔记 --粒子群优化算法(PSO)--python实现

PSO算法流程:

1.初始化粒子参数:

粒子群规模、粒子维度、迭代次数、惯性权重、学习因子、迭代步长范围

2.随机初始化每个粒子的(位置,速度):

个体、群体历史最优位置、适应值。

3.迭代:更新个体速度位置,个体最优适应值和位置--再更新群体;更新其他参数;

直到--两次迭代之间适应值最小差值()可接受的满意解/最大迭代次数。

4.速度更新公式

其中,\omega代表粒子自身惯性权重(较大有利于跳出局部最优,较小利于快速收敛找到最优,一般取值范围:(0.4,2),eg:0.9、1.2、1.5、1.8),d是粒子维度(自变量个数),c代表学习因子(一般取值(0,4)eg:1.6,1.8),r代表[0,1]的随机数,增加搜索随机性。

       线性变化策略:随着迭代次数的增加,惯性权重ω不断减小,从而使得粒子群算法在初期具有较强的全局收敛能力,在后期具有较强的局部收敛能力。

粒子群算法和差分进化算法都是一种优化算法,在解决问题时可以使用Python实现它们。 粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群觅食行为的优化算法。它通过模拟鸟群中个体的飞行路径来进行问题的求解。在粒子群算法中,每个个体被称为粒子,它们通过不断跟踪自己和其他粒子的最优位置来进行搜索。粒子群算法常用于连续优化问题的求解。 差分进化算法(Differential Evolution,DE)是一种基于种群演化的优化算法。它通过模拟生物种群的演化过程来进行问题的求解。差分进化算法在每一代中将每个个体作为“父代”并产生新的“子代”,通过对子代进行变异、交叉和选择操作来逐步改进解的质量。差分进化算法常用于连续优化问题和全局优化问题的求解。 在Python中,可以使用相关的实现这两种算法。例如,对于粒子群算法,可以使用pyswarms来进行实现和应用。而对于差分进化算法,可以使用deap来进行实现和应用。这两个都提供了丰富的功能和接口,可以方便地实现和应用这两种算法。 需要注意的是,在使用粒子群算法和差分进化算法解决具体问题时,需要根据问题的特点进行相应的参数设置和适应度函数的定义,以及合适的算法参数调优等步骤。这些都是根据具体问题来确定的,需要根据问题的特点进行相应的调整。 因此,如果你想在Python实现粒子群算法或差分进化算法,可以使用相应的来完成。同时,在实际应用中,需要根据具体问题进行参数设置和算法调优,以获得更好的结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [差分进化算法Python实现.zip](https://download.csdn.net/download/guofei9987/12285548)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [python 分别用改进的粒子群优化算法和改进的差分进化算法求解关于柔性作业车间调度问题研究](https://download.csdn.net/download/LIANG674027206/85302590)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Python itertools模块笔记:迭代工具.md](https://download.csdn.net/download/weixin_52057528/88218985)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值