IoT数据收集、分析与探索全解析
1. 数据收集技术与策略
在物联网(IoT)领域,数据收集是进行有效分析的基础。了解相关的技术和策略,有助于我们更好地处理和利用从设备收集到的数据。
1.1 Spark SQL与Hive的兼容性
Spark SQL模块与HiveQL完全兼容,并且可以使用Hive元数据存储、Hive用户定义函数(UDF)和序列化/反序列化器(SerDes)。当Spark与Hive一起安装在集群上时,HiveContext对象可以原生支持这种集成。此外,Spark还能原生读写Parquet格式的文件,这些文件可以存储在HDFS、S3或其他Spark可访问的文件系统中。由于Parquet文件包含模式信息,因此加载和设置分布式数据集进行分析变得非常简单。
1.2 流处理与批处理的权衡
流数据是指随着每个新数据消息的到来而不断更新的数据集,且延迟极小。流分析对这种不断更新的数据集进行处理的间隔比批处理短得多。不过,实时分析在流分析中的应用有些名不副实,因为其处理间隔通常以分钟为单位,并非真正的连续进行。
流数据集通常会在一段时间内保留数据,然后丢弃。处理流数据需要专门的技术和处理选项,这在很大程度上是对长期大数据存储技术的补充。例如,Amazon Kinesis就是一种专门的数据流式传输技术服务。
支持流分析所需的技术和编程代码库通常与长期历史分析所需的不同。这意味着在大多数用例中,需要两个系统和代码库。目前有多项工作正在进行中,试图将它们整合为一体,例如Spark 2.1的Spark Streaming模块,但这一领域仍在不断发展。
对于物联网分析,在决定是否需要