Assisted Excitation of Activations: A Learning Technique to Improve Object Detect

CVPR2019

很简单的一篇文章,不是在网络结构设计或者loss上做改进, 而是提出一种简单的学习策略。它基于curriculum learning
的思想:如果我们先学习简单的任务, 再学习复杂的任务, 我们会取得更好的效果。

以YOLO为例:

在YOLO的网络中加入这样的辅助激发层(AE)。 它根据ground truth的位置, 在原有特征图上激发对应位置(实质也是attention)。EA层具体如下:

 

其中alpha随着训练的进行,逐渐减小, 最后变成0, 这样EA的输入和输出是相同的。回到原始YOLO的训练模式。

很容易理解:alpha越大, ground truth渗透的信息就越多, 训练难度就越低; 反之越大。 alpha渐次降低, 符合直观的从易到难学习过程。

效果:整个网络架构几乎没有改变, 所以速度不变, 精度有所提升。

小结: 这个从易到难的学习策略可以借鉴。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值