下面问题
原题是说,下面的等式
∫
0
∞
∏
k
=
0
N
(
sin
t
100
k
+
1
t
100
k
+
1
)
d
t
=
π
2
\int_0^\infty\prod\limits_{k=0}^{N}\left(\dfrac{\sin \dfrac{t}{100k+1}}{\dfrac{t}{100k+1}}\right)dt=\dfrac{\pi}2
∫0∞k=0∏N⎝⎜⎛100k+1tsin100k+1t⎠⎟⎞dt=2π
对于 N < 9.8 × 1 0 42 N<9.8\times 10^{42} N<9.8×1042都成立,但是对 N > 7.4 × 1 0 43 N>7.4\times 10^{43} N>7.4×1043 不成立。
我觉得这个是靠谱的,但是具体证明或验证比较难。
类似的例子
如果把上面的问题调整成下面的形式,把 k k k前面的系数100改成比较小的自然数,比如1,2,3, ⋯ \cdots ⋯ 观察一下规律,比如:
(1)
∫
0
∞
∏
k
=
0
N
(
sin
t
k
+
1
t
k
+
1
)
d
t
=
π
2
\int_0^\infty\prod\limits_{k=0}^{N}\left(\dfrac{\sin \dfrac{t}{{\color{red}}k+1}}{\dfrac{t}{{\color{red}}k+1}}\right)dt=\dfrac{\pi}2\tag{1}
∫0∞k=0∏N⎝⎜⎛k+1tsink+1t⎠⎟⎞dt=2π(1)
(2)
∫
0
∞
∏
k
=
0
N
(
sin
t
2
k
+
1
t
2
k
+
1
)
d
t
=
π
2
\int_0^\infty\prod\limits_{k=0}^{N}\left(\dfrac{\sin \dfrac{t}{{\color{red}2}k+1}}{\dfrac{t}{{\color{red}2}k+1}}\right)dt=\dfrac{\pi}2\tag{2}
∫0∞k=0∏N⎝⎜⎛2k+1tsin2k+1t⎠⎟⎞dt=2π(2)
(3)
∫
0
∞
∏
k
=
0
N
(
sin
t
3
k
+
1
t
3
k
+
1
)
d
t
=
π
2
\int_0^\infty\prod\limits_{k=0}^{N}\left(\dfrac{\sin \dfrac{t}{{\color{red}3}k+1}}{\dfrac{t}{{\color{red}3}k+1}}\right)dt=\dfrac{\pi}2\tag{3}
∫0∞k=0∏N⎝⎜⎛3k+1tsin3k+1t⎠⎟⎞dt=2π(3)
求 自然数
N
N
N 最大分别为多大的时候成立(记这个最大
N
N
N 为
N
c
N_c
Nc)?
“容易”(通过计算、借助符号计算工具而不是手动)验证,
对公式(1),
N
=
1
,
2
N=1,2
N=1,2时等式成立,但是
N
≥
3
N\ge 3
N≥3之后结果就不再一致了,
N
c
1
=
2
N^{\color{red}1}_c=2
Nc1=2;
对公式(2),
N
=
1
,
2
,
3
,
4
,
5
,
6
N=1,2,3,4,5,6
N=1,2,3,4,5,6 等式都成立,但是
N
≥
7
N\ge 7
N≥7之后,结果就不再一致了,所以,
N
c
2
=
6
N^{\color{red}2}_c=6
Nc2=6。
对于公式(3), 我用软件验证到
N
=
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
N=1,2,3,4,5,6,7,8,9,10,11,12,
N=1,2,3,4,5,6,7,8,9,10,11,12,都成立,到
N
=
13
N=13
N=13计算实在太耗时了,我就没有等下去(后来发现还是
π
2
\dfrac{\pi}2
2π),
N
=
17
N=17
N=17的计算,我让计算机自己忙了一个通宵,没出来结果!——谁有超级计算机可以继续验证下去,我的破电脑应该是连
N
c
3
N^{\color{red}3}_c
Nc3 都难以验证出来是多少了。
公布下部分已经验证了的结果,可以让期望通过简单的、常规技巧(什么傅里叶卷积、什么泰勒级数、什么复变函数 ⋯ \cdots ⋯)就能手动得到 N N N比较大的时候的积分的演算解析解的同学们死心:那么长的整数的加减乘除计算、手动求不论有什么技巧、累不累?对人力来说已经算是不可能事件了。
定义这样一个关于自然数 N N N的函数 f ( N ) f\left(N\right) f(N)
(4) f 2 ( N )    def ‾ ‾    ∫ 0 ∞ ∏ k = 0 N ( sin t 2 k + 1 t 2 k + 1 ) d t f_{\color{red}2}\left(N\right)\;\underline{\underline {\text{def}}}\;\int_0^\infty\prod\limits_{k=0}^{N}\left(\dfrac{\sin \dfrac{t}{{\color{red}2}k+1}}{\dfrac{t}{{\color{red}2}k+1}}\right)dt\tag{4} f2(N)def∫0∞k=0∏N⎝⎜⎛2k+1tsin2k+1t⎠⎟⎞dt(4)
可以得到:
(5)
f
2
(
1
)
=
π
2
f
2
(
2
)
=
π
2
f
2
(
3
)
=
π
2
⋯
⋯
f
2
(
6
)
=
π
2
f
2
(
7
)
=
467807924713440738696537864469
935615849440640907310521750000
π
f
2
(
8
)
=
17708695183056190642497315530628422295569865119
35417390788301195294898352987527510935040000000
π
}
\left.\begin{array}{ccl} f_2(1)&=&\dfrac{\pi}2\\[10pt] f_2(2)&=&\dfrac{\pi}2\\[10pt] f_2(3)&=&\dfrac{\pi}2\\[10pt] \cdots&\cdots\\ f_2(6)&=&\dfrac{\pi}2\\[10pt] f_2(7)&=&\dfrac{467807924713440738696537864469}{935615849440640907310521750000} \pi \\[15pt] f_2(8)&=&\dfrac{17708695183056190642497315530628422295569865119}{35417390788301195294898352987527510935040000000} \pi \\[15pt] \end{array}\right\}\quad\tag{5}
f2(1)f2(2)f2(3)⋯f2(6)f2(7)f2(8)===⋯===2π2π2π2π935615849440640907310521750000467807924713440738696537864469π3541739078830119529489835298752751093504000000017708695183056190642497315530628422295569865119π⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎫(5)
可以观察到的趋势是,随着 k k k前面系数的增大,可以保持积分值为 π 2 \dfrac{\pi}2 2π的自然数 N N N的边界也逐渐增大。但没想到到100的时候可以这么大。猜想:这个应该是有规律可循的吧?而且,随着这个 k k k前系数 # \color{red}\# #的增大、边界 N c # N^{\color{red}\#}_c Nc#急剧膨胀,这才可能在系数为100的时候就膨胀到 1 0 40 10^{40} 1040这种天文数字级别。
至此我已经可以放弃了。我观望。这个问题的确定性结果是相当值钱的。