最新Meta AI的LIama 4大模型推理能力不及格的案例

我测试大语言模型推理能力,只用了一个标准。一道小学数学应用题。所以,如果针对性训练过的可能占便宜。但大模型训练怎么可能关注我的测试标准?

关注到不少认为LIama 4如何了不起的声音。我当然要亲自测试才知道真假。

我测试了。推理能力有欠缺。下面是测试结果。

在这里插入图片描述
但我提示了一下,也能找到正确结果,但这不能说明问题啊。因为,大语言模型最擅长穿凿附会。下面就是一种典型的穿凿得到正确答案的解法:

在这里插入图片描述
小扎啊,你还得继续努力啊。

下面是测试题的原文:

你的模型名称和版本号,然后解答下面问题:两地A、B之间相距4000m;甲从A地以匀速60m/min向B出发,同时乙从B地出发以匀速260m/min向A出发。乙到达A地之后立即以同一匀速折返向B地,追上甲之后,甲和乙以相同的匀速175m/min到达B地。如果甲和乙分别从A、B两地相向出发的时刻是上午7:20,
则甲和乙携手到达B地时,距离上午8:00还差几分钟?

### 如何在 DeepSeek R1 上部署 Llama 模型 #### 准备工作 为了成功地将Llama模型部署到DeepSeek R1平台上,需先完成一系列准备工作。这包括但不限于获取必要的硬件资源和支持软件环境配置。确保拥有足够的计算能力来支持模型运行以及安装有Python解释器和PyTorch库等依赖项[^1]。 #### 获取预训练模型 对于想要快速启动并测试效果的情况来说,可以从公开渠道下载已经过良好训练的Llama权重文件作为起点。这些预先训练好的参数能够极大地减少自行训练所需的时间成本和技术难度[^2]。 #### 修改模型接口适配DeepSeek框架 由于不同平台间可能存在API差异,在实际操作前可能需要调整原生Llama代码中的部分函数定义或是数据输入/输出格式以更好地匹配目标系统的特性要求。此过程涉及到对原始项目结构的理解与改造技能。 #### 编写Dockerfile定制化镜像 考虑到跨设备移植性和一致性维护的需求,建议创建专门用于承载该特定版本应用实例的基础映像描述文档——即Dockerfile。通过这种方式可以简化后续重复性的设置流程,并有助于团队协作开发模式下的资源共享。 ```dockerfile FROM pytorch/pytorch:latest WORKDIR /app COPY . . RUN pip install -r requirements.txt CMD ["python", "main.py"] ``` #### 构建与推送容器镜像至仓库 利用上述准备完毕后的脚本文件执行构建命令生成最终可分发使用的二进制包;之后再将其上传保存于私有的或公共性质的服务端存储空间内以便随时拉取更新最新改动成果。 #### 发布上线及监控管理 最后一步则是正式对外提供在线访问权限之前做好充分的安全检测措施(如防火墙策略设定),同时建立一套完善的日志记录机制用来追踪异常情况的发生位置及其影响范围大小等问题所在之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值