题目链接
某市调查城镇交通状况,得到现有城镇道路统计表。表中列出了每条道路直接连通的城镇。市政府 "村村通工程" 的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要相互之间可达即可)。请你计算出最少还需要建设多少条道路?
输入格式
输入包含若干组测试测试数据,每组测试数据的第一行给出两个用空格隔开的正整数,分别是城镇数目 n 和道路数目 m ;随后的 m 行对应 m 条道路,每行给出一对用空格隔开的正整数,分别是该条道路直接相连的两个城镇的编号。简单起见,城镇从 1 到 n 编号。
注意:两个城市间可以有多条道路相通。
输出格式
对于每组数据,对应一行一个整数。表示最少还需要建设的道路数目。
输入输出样例
输入 #1复制
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
输出 #1复制
1 0 2 998
说明/提示
数据规模与约定
对于 100% 的数据,保证 1≤n<1000 。
思路:用并查集做比较简单,具体思路如下,我们知道俩个点合并的时候会留下一个点(祖先结点),所以我们可以通过判断当前有多少个点等于初始化的值来知道还需要几条边。以样例为例,第一个例子,1,3,4连通,2没连通,还需要一条边,这时f[i]的值等于初始化时的值有2个点;第二个例子1,2,3连通,这时f[i]的值等于初始化时的值有1个点;第三个例子,1,2连通,3,5连通,这时f[i]的值等于初始化时的值有3个点;第四个例子,999个点都未连通。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 10;
int f[maxn];
int n;
int find(int x)
{
while(x != f[x])
x = f[x] = find(f[x]);
return x;
}
void Union(int x, int y)
{
int fx = find(x);
int fy = find(y);
if(fx != fy)
f[fx] = fy;
}
void init()
{
for(int i = 1; i <= n; i++)
f[i] = i;
}
int main()
{
while(~scanf("%d", &n) && n != 0){
init();
int m;
scanf("%d", &m);
while(m--){
int xi, yi;
scanf("%d%d", &xi, &yi);
Union(xi, yi);
}
int cnt = 0;
for(int i = 1; i <= n; i++){
if(f[i] == i)
cnt++;
}
printf("%d\n", cnt - 1);
}
return 0;
}