信息检索中的结果评价

本文介绍了信息检索中的结果评价指标,包括无序结果评价的正确率(Precision)、召回率(Recall)和F值,以及有序结果评价的MAP值和NDCG值。重点讲解了这些指标的计算方法和它们如何考虑相关文档的数量、位置以及相关度。NDCG值尤其考虑了文档的相关度和位置,是衡量检索系统性能的重要指标。
摘要由CSDN通过智能技术生成

一、无序结果评价

1.正确率(Precision)

        Precision = 返回结果中的相关文档数 /  返回结果的数目

2.召回率(Recall)

       Recall = 返回结果中的相关文档数 / 所有原本相关文档数目

3.F值,是Precision和Recall的调和平均值

F = (β^2+1)PR / (β^2P+R) ,β=1表示正确率和召回率的等权重,β<1表示强调正确率,β>1表示强调召回率。


二、有序结果的评价

1.MAP值(mean average precision,平均正确率值)

这里的“平均”指的是对query的平均。公式如下:


其中,Q是query的集合,mj表示qj对应的所有相关文档的文档数,Rjk表示返回结果中直到遇见文档k(也是相关文档哦!)所在位置前的所有文档集合,也就是说对应的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值