琪露诺的完美算法课

本文介绍了一种高效计算满足特定条件的正整数三角形个数的方法,利用约数分解和线性筛技巧,针对不同奇偶性下的a²和a²-1,给出了三角形数量的计算公式,并通过预处理优化了时间复杂度至O(n^2)。

Description

给出 a a a的范围 [ x , y ] [x,y] [x,y],求满足 c 2 ⩽ a 2 + b 2 ⩽ c 2 + 1 c^2\leqslant a^2+b^2\leqslant c^2+1 c2a2+b2c2+1的边长均为正整数的三角形个数

Solution

对原式变形:
a 2 = c 2 − b 2 = ( c + b ) ( c − b ) a^2=c^2-b^2=(c+b)(c-b) a2=c2b2=(c+b)(cb)

a 2 − 1 = c 2 − b 2 = ( c + b ) ( c − b ) a^2-1=c^2-b^2=(c+b)(c-b) a21=c2b2=(c+b)(cb)

则若 a 2 = i ∗ j ( i > j ) a^2=i*j(i>j) a2=ij(i>j),且 i i i j j j奇偶性相同,有三角形 ( a , i − j 2 , i + j 2 ) (a,\frac{i-j}{2},\frac{i+j}2) (a,2ij,2i+j) a 2 − 1 a^2-1 a21同理

此时,时间复杂度为 O ( n 2 ) O(n^2) O(n2),期望得分 30 p t s 30pts 30pts

重新观察一下,我们可以发现

f i f_i fi a = i a=i a=i时的三角形数量, d i d_i di i i i的约数数量, n u m i num_i numi i i i的最小质因数的出现次数, p i p_i pi i i i最大的奇数约数

1 计算 f f f
1.1

对于 a a a为奇数的情况:
f a = d a 2 (1.1) f_a=\cfrac{d_a}{2}\tag{1.1} fa=2da(1.1)

proof:

约数两两配对

1.2

对于 a a a为偶数的情况:
f a = d p a ∗ ( n u m a − 1 ) 2   ( p a % 2 = 1 , p a ∗ 2 n u m a = a ) (1.2) f_a=\frac {d_{p_a}*(num_a-1)}2\ (p_a\%2=1,p_a*2^{num_a}=a)\tag{1.2} fa=2dpa(numa1) (pa%2=1,pa2numa=a)(1.2)

proof:

对于奇数 p a p_a pa,有 d p a d_{p_a} dpa种,将 n u m i num_i numi 2 2 2分入两个数中,每个数至少有一个·,则为 ( n u m i − 1 ) (num_i-1) (numi1)

可以用线性筛预处理 d d d

线性筛求约数个数

2 计算 f a 2 f_{a^2} fa2
2.1

a a a为奇数,
f a 2 = d a 2 2 (2.1) f_{a^2}=\cfrac{d_{a^2}}{2}\tag{2.1} fa2=2da2(2.1)

对于每个 i i i,设 d f a = d a 2 = ( 2 k 1 + 1 ) ( 2 k 2 + 1 ) . . . ( 2 k n + 1 ) df_a=d_{a^2}=(2k_1+1)(2k_2+1)...(2k_n+1) dfa=da2=(2k1+1)(2k2+1)...(2kn+1)

可以在预处理 d d d的时候一起处理

2.2

a a a为偶数,
f a 2 = d p a 2 ∗ ( 2 ∗ n u m i − 1 ) 2 (2.2) f_{a^2}=\cfrac{d_{p_a^2}*(2*num_i-1)}{2}\tag{2.2} fa2=2dpa2(2numi1)(2.2)

3 计算 f a 2 − 1 f_{a^2-1} fa21
3.1

a a a为偶数,则 a 2 − 1 a^2-1 a21为奇数,所以
f a 2 − 1 = d a 2 − 1 2 = d a + 1 ∗ d a − 1 2 (3.1) f_{a^2-1}=\cfrac{d_{a^2-1}}{2}=\cfrac{d_{a+1}*d_{a-1}}{2}\tag{3.1} fa21=2da21=2da+1da1(3.1)

3.2

a a a为奇数,则 a 2 − 1 a^2-1 a21为偶数,所以
f a 2 − 1 = d p i + 1 ∗ d p i − 1 ∗ ( n u m i + 1 + n u m i − 1 − 1 ) 2 (3.2) f_{a^2-1}=\cfrac{d_{p_{i+1}}*d_{p_{i-1}}*(num_{i+1}+num_{i-1}-1)}{2}\tag{3.2} fa21=2dpi+1dpi1(numi+1+numi11)(3.2)
最后枚举 a a a,根据奇偶性作答即可

改一下题面,标题自拟,要求把主角改成数学老师胡特。胡特精通数学领域,而且经常给同学们打鸡血 题面: ## 题目背景 上白泽慧音在给雾之湖的妖精们讲。 某天,慧音在上数学时,提到了一种非常有趣的记号:**高德纳箭号表示法**。它可以用来描述非常巨大的数字。~~比如紫的年龄。~~ 对于非负整数 $a, b$ 和正整数 $n$,高德纳箭号表示法的定义为: $$a \uparrow^n b = \begin{cases} 1\ (b = 0) \\ a^b\ (n = 1\ \operatorname{and}\ b > 0) \\ a \uparrow^{n - 1} (a \uparrow^n (b - 1))\ (n > 1\ \operatorname{and}\ b > 0) \end{cases}$$ 一些简单的例子: - $2 \uparrow 31 = 2^{31} = 2147483648$ - $2 \uparrow \uparrow 4 = 2^{2^{2^2}} = 2^{2^4} = 2^{16} = 65536$ 注: 1. $a \uparrow b$ 与 $a \uparrow^1 b$ 相同; 2. $a \uparrow \uparrow b$ 与 $a \uparrow^2 b$ 相同; 3. 请注意幂运算的顺序。 ## 题目描述 慧音希望解决以下关于 $x$ 的方程: $$a \uparrow^n x \equiv b \pmod p$$ 其中,$a, n, b, p$ 为已知的常数,$x$ 为未知数。 被高德纳箭号表示法搞得云里雾里的,但是她不想被头槌。你能帮帮她吗? ## 输入格式 **本题有多组测试数据。** 第一行,一个整数 $T$,表示数据组数。 对于每组数据: 一行,四个整数 $a, n, b, p$。 ## 输出格式 对于每组数据,输出一行,一个整数,如果原方程有解,输出该方程的最小非负整数解;否则,输出 $-1$。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 2 1 1 3 3 1 2 7 7 1 2 4 ``` ### 输出 #1 ``` 0 2 -1 ``` ## 输入输出样例 #2 ### 输入 #2 ``` 3 2 2 4 7 3 2 4 6 5 2 1 3 ``` ### 输出 #2 ``` 2 -1 0 ``` ## 输入输出样例 #3 ### 输入 #3 ``` 3 4 3 5 8 2 3 9 11 6 3 1 5 ``` ### 输出 #3 ``` -1 3 0 ``` ## 说明/提示 **本题开启捆绑测试。** | Subtask | $n$ | $p$ | $T$ | 分值 | 时限 | | :------: | :------: | :------: | :------: | :------: | :------: | | $1$ | $n = 1$ | $2 \leq p \leq 10^9$ 且 $p$ 为质数 | $1 \leq T \leq 100$ | $15 \operatorname{pts}$ | $2.00 \operatorname{s}$ | | $2$ | $n = 2$ | 无特殊限制 | $1 \leq T \leq 5 \times 10^3$ | $25 \operatorname{pts}$ | $1.00 \operatorname{s}$ | | $3$ | $n = 3$ | 无特殊限制 | 无特殊限制 | $60 \operatorname{pts}$ | $2.00 \operatorname{s}$ | 对于 $100\%$ 的数据,$1 \leq a \leq 10^9$,$1 \leq n \leq 3$,$0 \leq b < p \leq 10^9$,$1 \leq T \leq 2 \times 10^4$。
09-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值