deeplearning课程学习报告(1)

本文记录了作者初次学习深度学习的过程,包括完成Convolutional Neural Networks课程,学习Python入门,以及neural networks&deep learning课程的Week1和Week2编程作业。在编程实践中,作者探讨了随机数种子的使用、代码错误修正,以及在不同Python版本下代码的兼容性问题。特别提到了numpy.random.seed()的作用,并分享了在绘制花朵图时遇到的错误及其解决方案。
摘要由CSDN通过智能技术生成

    因为是第一次写,先将本周及本周之前完成的工作汇报一下。

    首先完成了Convolutional Neural Networks课程的视频和练习题的学习,在试图完成编程习题时看到了这句话


。。。。。。好吧于是按照课程顺序开始从头学起。在慕课网上学习了一门简单的python入门视频课程,然后完成了neural networks&deep learning课程视频和练习题的学习,以及编程作业的前两周的内容。

    关于neural networks&deep learning编程题week1,2的内容,由于内容较多,感谢 保罗.盲 老哥提供的资源整合链接https://zhuanlan.zhihu.com/p/35333489   作业内容本地也有备份,内容较多且要点都有说明我这里就不复制粘贴了

    但是就本次neural networks&deep learning编程题week1,2的部分,有一些错误或者注意点需要说明如下:

1. 关于随机数种子

    题目中多次看到出现如numpy.random.seed()方法的使用,目的是在于“生成相同的随机数,已获得和给出的样例预期结果一样的运行结果”。是什么意思呢?

   测试运行如下: 

首先这是将随机数种子设置为0后的10个随机数输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值