顾名思义,跨数据集检测任务旨在用混合后的数据集上训练能够取得与在单独数据集上训练相当的效果(对于任意一个数据集中的所有类别来说)。
作者称,对于跨数据集检测,直接将label混合会带来两个问题:
1.目标的重复
2.正负样本的冲突(如下图,人的GT box中很大一部分被作为是脸的负样本)
这里负样本应该是指(与任何GT小于IOU阈值的anchor,是背景意义上的负样本)。作者想表达的意思是,如果按照常规的方法训练图1上行的人脸,那么将会出现大量的背景区域,这一部分的前景confidence极低,影响到混合后数据集要求的整个人的检测。
因此作者定出跨数据集训练策略:
1.merge duplicated labels across datasets
2. generate a hybrid dataset through label concatenation but still keep the original partition information of every image
3.build an avoidance relationship across partitions such as face-negative versus human-positive
4.train the detector with this hybrid dataset where the loss is calculated according to this avoidance relationship