论文笔记:Cross-dataset Training for Class Increasing Object Detection

这篇论文探讨了跨数据集训练对象检测模型时遇到的目标重复和正负样本冲突问题。作者提出通过合并重复标签、构建数据集间的回避关系,并采用Dataset-aware Focal Loss来解决这些问题。实验表明,这种方法在保持单数据集性能的同时,能有效提升检测效果。
摘要由CSDN通过智能技术生成

顾名思义,跨数据集检测任务旨在用混合后的数据集上训练能够取得与在单独数据集上训练相当的效果(对于任意一个数据集中的所有类别来说)。

作者称,对于跨数据集检测,直接将label混合会带来两个问题:
1.目标的重复
2.正负样本的冲突(如下图,人的GT box中很大一部分被作为是脸的负样本)

这里负样本应该是指(与任何GT小于IOU阈值的anchor,是背景意义上的负样本)。作者想表达的意思是,如果按照常规的方法训练图1上行的人脸,那么将会出现大量的背景区域,这一部分的前景confidence极低,影响到混合后数据集要求的整个人的检测。

在这里插入图片描述
因此作者定出跨数据集训练策略:
1.merge duplicated labels across datasets
2. generate a hybrid dataset through label concatenation but still keep the original partition information of every image
3.build an avoidance relationship across partitions such as face-negative versus human-positive
4.train the detector with this hybrid dataset where the loss is calculated according to this avoidance relationship

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值