【论文笔记】PassGAN: A Deep Learning Approach for Password Guessing

PassGAN是一种使用对抗神经网络(GAN)从真实密码泄露中学习并生成高质量密码猜测的新型方法。相较于传统密码猜解工具,PassGAN无需人工规则,能匹配更多密码,且与HashCat结合使用时,匹配率提升51%-73%。然而,它不依赖于先验知识,这既是优点也是一大局限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


title: “【论文笔记】PassGAN: A Deep Learning Approach for Password Guessing”
date: 2019-10-12
lastmod: 2019-10-12
draft: False
description: “论文描述”
tags: [“论文笔记”,“隐私安全”,“密码”,“深度学习”,“GAN”,“PassGAN”,“密码猜解”]
categories: [“论文笔记”]


论文主题

使用对抗神经网络的方式进行密码生成和密码猜解。

摘要

中文

最先进的密码猜测工具,例如HashCat和Ripper John,使用户能够每秒检查数十亿个密码以防密码哈希。除了执行简单的字典攻击外,这些工具还可以使用密码生成规则来扩展密码词典,例如单词的串联(例如“ password123456”)和轻声说话(例如“ password”变为“ p4s5w0rd”)。尽管这些规则在实践中效果很好,但是将其扩展以模拟更多密码是一项艰巨的任务,需要专业知识。为了解决这个问题,在本文中,我们介绍了PassGAN,这是一种新颖的方法,该方法以理论为基础的机器学习算法取代了人为生成的密码规则。 PassGAN不再依赖人工密码分析,而是使用Genversative Adversarial Network(GAN)来从实际密码泄漏中自动学习真实密码的分布,并生成高质量的密码猜测。我们的实验表明,这种方法非常有前途。当我们在两个大型密码数据集上评估PassGAN时,我们能够超越基于规则和最先进的机器学习密码猜测工具。但是,与其他工具相比,PassGAN在没有任何先验密码知识或通用密码结构的情况下获得了此结果。另外,当我们将PassGAN的输出与HashCat的输出组合在一起时,与仅使用HashCat的情况相比,我们能够匹配多51%-73%的密码。这是很了不起的,因为它表明PassGAN可以自主提取大量当前最新规则无法编码的密码属性。

英文

State-of-the-art password guessing tools, such as HashCat and John the Ripper, enable users to check billions of passwords per second against password hashes. In addition to performing straightforward dictionary attacks, the

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

M2kar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值