TensorFlow实现线性回归

之前写过TensorFlow建立神经网络的固定步骤https://blog.csdn.net/STILLxjy/article/details/89366256
现在我们严格按照上面的步骤实现线性回归。


已知一些点坐标(x,y),通过一条直线去拟合数据点(类似于根据大小估计房屋的价格)

(1)通过 y=2x + e 的方式创建实验数据,e为噪音
在这里插入图片描述


(2)按照步骤建立神经网络:
一:定义计算图结构
1:定义占位符x,y
2:定义变量W,随机初始化
3:定义预测值y_pred

二:定义损失函数
4:损失函数为 (y_pred - y)^2 取平均值

在这里插入图片描述
三:定义优化器
5:使用梯度下降算法最小化损失,步长为0.1

四:定义会话训练网络
6:初始化变量
7:迭代30次训练网络,更新参数值
在这里插入图片描述


(3)主函数
在这里插入图片描述


(4)实验结果:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值