11、多目标概率主动识别技术解析

多目标概率主动识别技术解析

1. 互信息与视角选择算法的关系

在多目标概率主动识别中,视角选择是一个关键环节。这里探讨了基于独特性地图的视角选择算法与基于互信息的视角选择方法之间的关系。

基于互信息的数据选择方法,在主动感知任务中被提出。对于多目标问题,该方法指导我们根据与感兴趣的随机变量 (Z_0(o, \theta_0)) 的互信息来选择下一个测试视角,即:
[
\delta_{t + 1} = \arg\max_{\delta’ \in V \setminus {\delta_1…\delta_t}} MI(f_{\text{test}}^{\delta’}; z_0)
]
其中,互信息定义为:
[
MI(f_{\text{test}}^{\delta’}; z_0) = H(z_0) - H(z_0|f_{\text{test}}^{\delta’})
]
这里 (H(.)) 是香农熵,(H(.|.)) 是条件熵。由于 (H(z_0)) 与 (\delta’) 无关,最大化上述互信息等价于最小化条件熵:
[
\delta_{t + 1} = \arg\min_{\delta’ \in V \setminus {\delta_1…\delta_t}} H(z_0|f_{\text{test}}^{\delta’})
]

根据似然函数的分解,可以计算条件熵:
[
H(z_0|f_{\text{test}}^{\delta}) = -\sum_{f_{\text{test}}^{\delta}, z_0} P(z_0)P(f_{\text{test}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值