多目标概率主动识别技术解析
1. 互信息与视角选择算法的关系
在多目标概率主动识别中,视角选择是一个关键环节。这里探讨了基于独特性地图的视角选择算法与基于互信息的视角选择方法之间的关系。
基于互信息的数据选择方法,在主动感知任务中被提出。对于多目标问题,该方法指导我们根据与感兴趣的随机变量 (Z_0(o, \theta_0)) 的互信息来选择下一个测试视角,即:
[
\delta_{t + 1} = \arg\max_{\delta’ \in V \setminus {\delta_1…\delta_t}} MI(f_{\text{test}}^{\delta’}; z_0)
]
其中,互信息定义为:
[
MI(f_{\text{test}}^{\delta’}; z_0) = H(z_0) - H(z_0|f_{\text{test}}^{\delta’})
]
这里 (H(.)) 是香农熵,(H(.|.)) 是条件熵。由于 (H(z_0)) 与 (\delta’) 无关,最大化上述互信息等价于最小化条件熵:
[
\delta_{t + 1} = \arg\min_{\delta’ \in V \setminus {\delta_1…\delta_t}} H(z_0|f_{\text{test}}^{\delta’})
]
根据似然函数的分解,可以计算条件熵:
[
H(z_0|f_{\text{test}}^{\delta}) = -\sum_{f_{\text{test}}^{\delta}, z_0} P(z_0)P(f_{\text{test}
超级会员免费看
订阅专栏 解锁全文
868

被折叠的 条评论
为什么被折叠?



