洛谷10月月赛R2-T2-Chtholly Nota Seniorious

传送门
这个题首先我们发现那条分界线是单调的
并且最大值最小应该是老套路了,二分答案。
二分答案之后就可以贪心了,每一行尽量填,具体可以看我的代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
inline int read(){
    int x=0;char ch=' ';int f=1;
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')f=-1,ch=getchar();
    while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,mx,mn=0x3f3f3f3f;
int a[2002][2002],now[2002];
inline bool check(int x){
    int cap=m;
    memset(now,0,sizeof(now));
    for(int i=1;i<=n;i++){
        for(int j=1;j<=cap;j++){
            if(a[i][j]>=mx-x){
                now[i]=j;
            }
            else{
                break;
            }
        }
        cap=min(now[i],cap);
        for(int j=m;j>now[i];j--){
            if(a[i][j]>mn+x){
                return false;
            }
        }
    }
    return true;
}
inline int solve(){
    int l=0,r=mx-mn;
    int mid;
    while(l<r){
        mid=(l+r)>>1;
        if(check(mid)){
            r=mid;
        }
        else{
            l=mid+1;
        }
    }
    return l;
}
inline void flip_r(){
    for(int i=1;i<=(n>>1);i++){
        for(int j=1;j<=m;j++){
            swap(a[i][j],a[n-i+1][j]);
        }
    }
}
inline void flip_c(){
    for(int i=1;i<=n;i++){
        for(int j=1;j<=(m>>1);j++){
            swap(a[i][j],a[i][m-j+1]);
        }
    }
}
int main(){
    n=read();m=read();
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            a[i][j]=read();
            mx=max(mx,a[i][j]);
            mn=min(mn,a[i][j]);
        }
    }
    int ans=solve();
    flip_c();
    ans=min(ans,solve());
    flip_r();
    ans=min(ans,solve());
    flip_c();
    ans=min(ans,solve());
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值