MingSun95
码龄10年
关注
提问 私信
  • 博客:59,799
    59,799
    总访问量
  • 42
    原创
  • 1,399,160
    排名
  • 37
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-08-04
博客简介:

qq_18882399的博客

查看详细资料
个人成就
  • 获得19次点赞
  • 内容获得36次评论
  • 获得134次收藏
创作历程
  • 26篇
    2019年
  • 9篇
    2018年
  • 10篇
    2017年
成就勋章
TA的专栏
  • 目标检测论文笔记
    4篇
  • leetcode 题目总结
    1篇
  • DeepLearning_Keras
    2篇
  • Paper_Notes
    6篇
  • OnlineCourse_Notes
    3篇
  • ML
    4篇
  • others
    2篇
  • CV
    10篇
  • leetcode
    16篇
  • 只出现一次
    1篇
兴趣领域 设置
  • 人工智能
    caffemxnetpytorch
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

357人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

AM-LFS: AutoML for Loss Function Search论文解读

一、研究动机该文章是五月份商汤科技与悉尼大学联合发布在arxiv上的文章,用自动机器学习来获取视觉任务中的最佳损失函数。众所周知,一个有效的损失函数在视觉任务中起了关键作用,然而现在大部分的损失函数都是人为设定,不仅耗时而且一般只能获得次优解。为了缓解上述问题,AM-LFS在训练阶段利用了强化的思想来自动搜索合适的损失函数的超参数,同时又设计了一个搜索空间能够适应于不同的视觉任务,将不同任务的...
原创
发布博客 2019.06.19 ·
1398 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

Pointin,Boxout: Beyond Counting Persons in Crowds 论文解读

一、研究动机现有的人群计数方法主要有两种:基于密度回归估计的方法和基于探测的方法,前者尽管有显著的改进,但基于回归的方法无法提供人群中的个体检测,而后者需要提供耗费人力的矩形框标注信息。因此,我们想绕过昂贵的矩形框标注成本,只利用点的监督信息来产生计数和探测的结果(也就是只依据点信息还需额外估计尺寸大小)。然而这种仅仅由位置监督信息获取尺寸的方法是基于人群分布密集和透视成像规律的,此规律有两个...
原创
发布博客 2019.06.18 ·
1420 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

R2-CNN: Fast Tiny Object Detection in Large-scale Remote Sensing Images论文解读

一、研究动机得益于卷积神经网络的迅速发展,目标检测作为计算视觉领域的基础任务也得到飞速发展,尤其是在日常场景(平视视角)中的数据集上表现喜人。但对于大尺度遥感图像的极小物体目标检测,其检测效果改进空间依旧很大。分析当前面临的挑战主要有以下几方面:(1)输入图片尺寸过大(18 000×18 192和27 620×29 200),现有目标检测方法效率 低。(2)复杂背景对检测任务带来干扰(沙漠...
原创
发布博客 2019.06.17 ·
3502 阅读 ·
2 点赞 ·
1 评论 ·
14 收藏

Precise Detection in Densely Packed Scenes(CVPR 2019)论文解读

一、研究动机在购物超市中,商品陈列区中摆放了密集而繁多的商品,它们大多是相同或极其相似的,并且位置十分靠近。当前主流的检测网络在这种场景下充满挑战,效果并不是很理想。本文的精确物体检测就是在这种场景基于主流检测方法,提出了以下几个方面的改进:(1)提出Soft-IoU层进行IoU的预测。(2) 引入一个基于EM算法的高斯混合聚类方法来解决探测重叠的问题。(3) 制作了公开数据集SKU-110K,...
原创
发布博客 2019.05.26 ·
2293 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

235. 二叉搜索树的最近公共祖先

解题思路:利用二叉搜索树的性质,左子树小,右子树大,最近公共祖父一定居于两数之间 * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = ...
原创
发布博客 2019.05.10 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

136. Single Number只出现一次的数字

解题思路:所有元素相继异或的最终结果class Solution { public int singleNumber(int[] n) { int re=n[0]; for(int i=1;i<n.length;i++){ re=re^n[i]; } return re; }}...
原创
发布博客 2019.05.10 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

206反转链表

/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { val = x; } * } */class Solution { public ListNode reverseLis...
原创
发布博客 2019.05.10 ·
121 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

557. Reverse Words in a String III(反转字符串中的单词 III)

解题思路:词用Stringbuilder存储字符串,然后利用Stringbuilder自带的inverse来反转。class Solution { public String reverseWords(String s) { if(s==null||s.length()<1) return ""; StringBuilde...
原创
发布博客 2019.05.10 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

292. Nim Game(Nim 游戏)

解题思路:如果堆中石头的数量 nnn 不能被 444 整除,那么你总是可以赢得 Nim 游戏的胜利。让我们考虑一些小例子。显而易见的是,如果石头堆中只有一块、两块、或是三块石头,那么在你的回合,你就可以把全部石子拿走,从而在游戏中取胜。而如果就像题目描述那样,堆中恰好有四块石头,你就会失败。因为在这种情况下不管你取走多少石头,总会为你的对手留下几块,使得他可以在游戏中打败你。因此,要想获胜,...
原创
发布博客 2019.05.10 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HRNet:基于高清表示网络的人体姿势估计

一、研究动机人体姿势估计问题中关键点检测是其关键的一步,本研究主要针对该步骤进行优化。深度神经网络的特征抽取使得特征图不断缩减,而优化的突破口在于想获得一个具有高清表示信息的特征来提升关键点检测的精度。已有方法的关注重点在于高清信息的恢复,恢复方式包括三种:沙漏型对称网络结构、反卷积和空洞卷积。这些方法都是在下采样的基础上进行恢复,其精度不理想。HRNet采用在下采样的过程中不断加入并行的子网络...
原创
发布博客 2019.05.10 ·
2546 阅读 ·
1 点赞 ·
1 评论 ·
18 收藏

122. Best Time to Buy and Sell Stock II买卖股票的最佳时机 II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。示例 1:输入: [7,1,5,3,6,4]输出: 7解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获...
原创
发布博客 2019.05.10 ·
238 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

121. Best Time to Buy and Sell Stock(买卖股票的最佳时机)

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。注意你不能在买入股票前卖出股票。示例 1:输入: [7,1,5,3,6,4]输出: 5解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是...
原创
发布博客 2019.05.10 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

678. Valid Parenthesis String(有效的括号字符串)

给定一个只包含三种字符的字符串:( ,) 和 *,写一个函数来检验这个字符串是否为有效字符串。有效字符串具有如下规则:任何左括号 ( 必须有相应的右括号 )。任何右括号 ) 必须有相应的左括号 ( 。左括号 ( 必须在对应的右括号之前 )。* 可以被视为单个右括号 ) ,或单个左括号 ( ,或一个空字符串。一个空字符串也被视为有效字符串。示例 1:输入: “()”输出: True...
原创
发布博客 2019.05.09 ·
521 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

856. Score of Parentheses(括号的分数)

class Solution { public int scoreOfParentheses(String S) { int sum=0; int n=0; int len=S.length(); for(int i=0;i<len;i++){ if(S.charAt(i)=='('){ ...
原创
发布博客 2019.05.09 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

553. Optimal Division(最优除法)

思路分析:这道题看似需要很高的技术含量,其实一点都不难。我们首先需要明白,除法与除法的优先级相同,如果我们用括号将第一个元素与其他元素扩起来并不会影响结果。(比如(1000/100)/10/2、(1000/100/10)/2 、(1000/100/10/2)结果都与没有添加括号1000/100/10/2的结果相同)也就是说第一个元素直接和结果相关,并且不依赖括号。而后面的元素可以看作为一个大...
原创
发布博客 2019.05.09 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

921. 使括号有效的最少添加

class Solution { public int minAddToMakeValid(String S) { if(S.length()==0) return 0; if(S.length()==1) return 1; List<Character> list=new Ar...
原创
发布博客 2019.05.08 ·
170 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

241. 为运算表达式设计优先级

class Solution { public List<Integer> diffWaysToCompute(String input) { List<Integer> list=new ArrayList<>(); if (input.length()==0) return list; ...
原创
发布博客 2019.05.08 ·
184 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

606. 根据二叉树创建字符串

/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */class Solution { pu...
原创
发布博客 2019.05.08 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

1021. 删除最外层的括号

遍历S,利用两个变量记录左右括号数量,相等就进行一次截取并添加到StrigBuilder中,然后重置变量。最后返回结果。ss Solution { public String removeOuterParentheses(String S) { StringBuilder re=new StringBuilder(); int m=0; ...
原创
发布博客 2019.05.08 ·
140 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

22. 括号生成

class Solution { public List<String> generateParenthesis(int n) { List<String> ans = new ArrayList(); if (n == 0) { ans.add(""); } else { ...
原创
发布博客 2019.05.08 ·
137 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多