Description
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......”
Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干!
Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。
通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。
Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。
Input
输入数据存放在文本文件ws.in中。
文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
Output
输出数据存放在文本文件ws.out中。
文件中仅包含一个整数ans,代表篱笆的最短长度。
Sample Input
2 2
2 2
1 1
Sample Output
2
Data Constraint
【数据范围】
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100
这个题其实还是挺裸的,就是连边,然后求一个最小割就好了。
嗯嗯,没了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
inline int read(){
int x=0;char ch=' ';int f=1;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
const int N=1e4+5,M=N*20;
const int b[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
int n,m,s,t,tot=-1;
int head[N],cur[N],d[N],q[N],mark[N],to[M],Next[M],flow[M];
inline void addedge(int x,int y,int l){
to[++tot]=y;Next[tot]=head[x];flow[tot]=l;head[x]=tot;
to[++tot]=x;Next[tot]=head[y];flow[tot]=0;head[y]=tot;
}
int a[101][101];
inline bool bfs(){
for(int i=s;i<=t;i++)d[i]=0x3f3f3f3f;
int l=1,r=1;q[1]=s;d[s]=0;
while(l<=r){
int x=q[l++];
for(int i=head[x];i!=-1;i=Next[i]){
int u=to[i];
if(flow[i]&&d[u]>d[x]+1){
d[u]=d[x]+1;
q[++r]=u;
}
}
}
return d[t]!=0x3f3f3f3f;
}
inline int dfs(int x,int a){
if(x==t||!a)return a;
int F=0,f;
for(int &i=cur[x];i!=-1;i=Next[i]){
int u=to[i];
if(flow[i]&&d[u]==d[x]+1&&(f=dfs(u,min(a,flow[i])))>0){
flow[i]-=f;
flow[i^1]+=f;
F+=f;
a-=f;
if(!a)return F;
}
}
return F;
}
inline int dinic(){
int F=0;
while(bfs()){
for(int i=s;i<=t;i++)cur[i]=head[i];
F+=dfs(s,0x3f3f3f3f);
}
return F;
}
int main(){
memset(head,-1,sizeof(head));
n=read();m=read();s=0;t=n*m+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
a[i][j]=read();
if(a[i][j]==1)addedge(s,(i-1)*m+j,0x3f3f3f3f);
if(a[i][j]==2)addedge((i-1)*m+j,t,0x3f3f3f3f);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int id=(i-1)*m+j;
for(int k=0;k<4;k++){
int tx=i+b[k][0],ty=j+b[k][1];
if(tx<1||tx>n||ty<1||ty>m)continue;
if(a[i][j]==0){
addedge(id,(tx-1)*m+ty,1);
}
else if(a[i][j]!=a[tx][ty]){
addedge(id,(tx-1)*m+ty,1);
}
}
}
}
printf("%d",dinic());
return 0;
}