题目传送门:https://www.luogu.org/problemnew/show/P2598
题意:
有一个n*m的矩阵,0表示空地,1表示狼的领地,2表示羊的领地,求最少用多长的栅栏可以使狼和羊的领地不相连(没有公共边)。
思路:
最小割。
1.源点向狼连一条边,流量为无限大(表示不会被割掉);
2.羊向汇点连一条边,流量为无限大(表示不会被割掉);
3.羊向相邻的狼连一条边,流量为1(可以被割掉);
4.我们想到,空地也可以当作栅栏,所以,我们就将羊向空地连一条边,流量为1(可以被割掉)。
最后用最大流最小割定理跑最大流即可。
代码:
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define INF 2147483647
using namespace std;
queue<int> f;
const int fx[4]={0,0,1,-1};
const int fy[4]={1,-1,0,0};
struct node{int x,y,z,next;} a[400010];
int b[210][210],last[20010];
int n,m,len=-1,st,ed;
void ins(int x,int y,int z)
{
a[++len].x=x;a[len].y=y;a[len].z=z;a[len].next=last[x];last[x]=len;
}
int h[20010];
bool bfs()
{
memset(h,0,sizeof(h));
h[st]=1;
f.push(st);
while(!f.empty())
{
int x=f.front();
for(int i=last[x];i>=0;i=a[i].next)
{
int y=a[i].y;
if(a[i].z>0&&h[y]==0)
{
h[y]=h[x]+1;
f.push(y);
}
}
f.pop();
}
if(h[ed]) return true; else return false;
}
int dfs(int x,int f)
{
int s=0,t;
if(x==ed) return f;
for(int i=last[x];i>=0;i=a[i].next)
{
int y=a[i].y;
if(a[i].z>0&&h[y]==h[x]+1&&f>s)
{
s+=(t=(dfs(y,min(f-s,a[i].z))));
a[i].z-=t;
a[i^1].z+=t;
}
}
if(!s) h[x]=0;
return s;
}
int dinic()
{
int sum=0;
while(bfs())
sum+=dfs(st,INF);
return sum;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&b[i][j]);
st=0,ed=n*m+1;
memset(last,-1,sizeof(last));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int id=(i-1)*m+j;
if(b[i][j]==1)
{
ins(st,id,INF),ins(id,st,0);
}
if(b[i][j]==2)
{
ins(id,ed,INF),ins(ed,id,0);
continue;
}
for(int k=0;k<=3;k++)
{
int t1=i+fx[k],t2=j+fy[k];
if(t1<=0||t1>n||t2<=0||t2>m) continue;
if(b[t1][t2]!=1) ins(id,(t1-1)*m+t2,1),ins((t1-1)*m+t2,id,0);
}
}
printf("%d",dinic());
}