matplotlib.pyplot.hist 参数介绍

matplotlib.pyplot.hist 是用于绘制直方图的函数,支持多种参数定制直方图样式。参数包括输入数据X、间隔bins、范围range、是否归一化density、累计计数cumulative、底部间隔bottom、直方图类型histtype等。该函数返回直方图的值、间隔数组和补丁对象。可用于数据可视化和统计分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方介绍:
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

matplotlib.pyplot.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)

绘制直方图。

参数解释
parametersX输入的数据,数组,若为多维度,不需要相同长度
bins直方图间隔,整数、序列或字符串,默认值为10,如果是整数,则划分为整数数值个数的等间隔宽;若为序列,前n-1个为左闭右开区间,最后一个为全闭区间;若为字符串,可供选择的有:numpy.histogram_bin_edges: 'auto', 'fd', 'doane', 'scott', 'stone', 'rice', 'sturges', or 'sqrt'.
rangetuple或者None,bins的上界和下界,超出边界外忽略,若为空,则range为(x.min(), x.max()),若bins为序列或字符串,则上下界与bins一致。
density布尔型,默认:False。若为真,绘制概率密度分布图(density = counts / (sum(counts) * np.diff(bins))),直方图的面积为1,(np.sum(density * np.diff(bins)) == 1).,若stacked为真,则总和归一化为1.
weights数组,默认None。与X具有相同的形状。若density为真,则weights归一化,以保证在该范围内的密度积分仍为1。
cumulative布尔型或-1,默认:False。若为真,则每个bin为从第一个开始的累计计数。若density为真,则直方图被归一化,且最后一个bin为1。若为一个小于0的数,颠倒累计方向。
bottom数组,标量或无,默认:None。直方图与底部的间隔,如果为一个标量,则整体向上平移bottom。若为数组,则shape与bins匹配,每个bin独立平移。
histtype{‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’}, 默认: ‘bar’。绘制直方图的类型:'bar’是传统条形直方图,‘barstacked’是多个数据相互堆叠的条形直方图,'step’是未填充的线图,‘stepfill’是填充的线图
align对齐方式,{‘left’, ‘mid’, ‘right’}, default: ‘mid’
orientation方向,{‘vertical’, ‘horizontal’}, default: ‘vertical’。两个方向,默认垂直方向,以下边界为底。‘horizontal’为以左边为底的横向直方图
rwidth浮点型或None。相对宽度,如果histtype是‘step’或者’stepfilled’,则忽略
log布尔型,默认False。若为真,则直方图刻度为对数刻度
color颜色,默认无
labelstr或None,
stacked布尔型,若为真,则多数据堆叠,若为假,分两种情况,histtype为‘bar’时,则对数据并排排列,histtype为‘step’时,堆叠
Returnsn直方图间隔的值,和权重和概率密度有关。
bins数组,长度为nbins+1
patches没看懂,不影响结果
其他参数ec直方图边界线颜色
alpha透明度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值