matplotlib 笔记:hist(直方图)

1 函数介绍

matplotlib.pyplot.hist(
    x,
    bins=None,
    range=None, 
    density=None, 
    bottom=None, 
    histtype='bar', 
    align='mid', 
    log=False, 
    color=None, 
    label=None, 
    stacked=False, 
    normed=None)

2 参数说明

x数据集,最终的直方图将对数据集进行统计
bins统计的区间分布
rangetuple, 显示的区间,range在没有给出bins时生效
densitybool,默认为false,显示的是频数统计结果,为True则显示频率统计结果,这里需要注意,频率统计结果=区间数目/(总数*区间宽度)
histtype

可选{'bar', 'barstacked', 'step', 'stepfilled'}之一,默认为bar,step使用的是梯状,stepfilled则会对梯状内部进行填充,效果与bar类似

align可选{'left', 'mid', 'right'}之一,默认为'mid',控制柱状图的水平分布
logbool,默认False,即y坐标轴是否选择指数刻度

color

直方图填充颜色
edgecolor指定直方图的边界色
stackedbool,默认为False,是否为堆积状图

3 具体使用

3.1 bins

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,100,1000)
plt.hist(x,bins=50)

3.2 range

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,100,1000)
plt.hist(x,range=[0,10])

 

3.3 density

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,100,1000)
plt.hist(x,bins=50,density=True)

 3.4 histtype='step'

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,100,1000)
plt.hist(x,bins=10,histtype='step')

3.5 orientation

从竖直方向的直方图,变为水平方向的直方图

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,100,1000)
plt.hist(x,bins=50,
        orientation='horizontal')

3.6 edgecolor 边界颜色 

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,100,1000)
plt.hist(x,bins=50,
        edgecolor='red')

 3.7 多组 直方图

直接联立即可

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,10,100)
plt.hist(x,bins=10)
plt.hist(x+2,bins=10)
plt.hist(x+5,bins=10)

 3.7.1 设置透明度

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randint(0,10,100)
plt.hist(x,bins=10,alpha=0.7)
plt.hist(x+2,bins=10,alpha=0.7)
plt.hist(x+5,bins=10,alpha=0.7)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值