阿里 骰子概率问题

问题:

一个骰子,6面,1个面是 1, 2个面是2, 3个面是3, 问平均掷多少次能使1,2,3都至少出现一次?

一共有三种方法可以解此问题:概率公式、分叉树递归列方程法、指示器变量法。

1. 方法一:概率公式

化为概率的表示是:

1发生 的概率是1/6,  2发生的概率是2/6,  3发生的概率是3/6,求1,2,3至少出现一次的投掷次数的期望。

思路:

第一二次肯定不可能出现这种情况
第x(x > 2)次三个都出现的情况分三种(x ^ y 表示 x 的 y 次方)

1:第x次出现 1,那么前面出现的必然是 2 和 3 ,且至少出现一次   
   出现1的概率为 1 / 6,前面x-1次不出现1的概率为(1 - 1 / 6) ^ (x - 1),但是其中包含全是 2 和全是 3 的情况,去掉全 2 的概率 (1 / 2) ^ (x - 1),全部为3的概率(1 / 3) ^ (x - 1),那么情况 1 的概率为 ((1 - 1 / 6) ^ (x - 1) - (1 / 2) ^ (x - 1) - (1 / 3) ^ (x - 1)) * (1 / 6)

2:第x次出现2,那么前面出现的必然是 1 和 3 ,且至少出现一次
   同样,概率为 ((1 - 1 / 3) ^ (x - 1) - (1 / 2) ^ (x - 1) - (1 / 6) ^ (x - 1)) * (1 / 3)

3:第x次出现3,那么前面出现的必然是 1 和 2 ,且至少出现一次
   同样,概率为 ((1 - 1 / 2) ^ (x - 1) - (1 / 3) ^ (x - 1) - (1 / 6) ^ (x - 1)) * (1 / 2)

p(x)就为上面三种情况的和

那么,根据期望公式,平均值就等于从x = 3 到 n(无穷)求(x * p(x))的和

利用错位相减法计算极限值



到此可以算出期望为7.3。

2. 方法二:分叉树递归列方程法

方法: 面对面试概率题几乎屡试不爽的分叉树递归列方程法。

这是一个求数学期望的问题,最终是求1,2,3出现至少一次的最短长度的期望。

这样分叉树的每个节点是一个期望状态,而每个分叉是一次投掷结果。将后续期望出现1、2、3各至少一次的情形记作L123(即题目所求),将后续期望出现1、2各至少一次(3无关)情形记作L12,而1至少一次(2,3无关)情形L1,其余数值符号类推,则树结构如下(列出4级结构已经足够):

第一级(树根)第二级第三级第四级别
L123掷1->L23掷1->L23同状态
  掷2->L3根据投掷结果,或继续期待L3,或已经达到目标
  掷3->L2根据投掷结果,或继续期待L2,或已经达到目标
 掷2->L13掷1->L3根据投掷结果,或继续期待L3,或已经达到目标
  掷2->L13同状态
  掷3->L1根据投掷结果,或继续期待L1,或已经达到目标
 掷3->L12掷1->L2根据投掷结果,或继续期待L2,或已经达到目标
  掷2->L1根据投掷结果,或继续期待L1,或已经达到目标
  掷3->L12同状态

接下来,就是要排出方程,因为一共7个未知数,如果排出7个线性方程就能解决问题。

这方程组里的未知数对应上述的状态,而其数值则是一个对长度(投掷次数)的数学期望。

根据这个树状结构和其中的递归关系,这个方程组就是:

L123 = p1 (L23+ 1) + p2 (L13+1) + p3 (L12 + 1) = p1 L23 +p2 L13+ p3 L12 + 1

(以这个L123为例,解释,投掷1的概率是p1而由此得到的结果是需要期待后续2和3各至少出现一次,于是长度期望是L23+ 1,加1是因为投掷了一次,亦即即增进一级)

L23 = p1 L23 +p2 L3+ p3 L2 + 1

L13 = p1 L3 +p2 L13+ p3 L1 + 1

L12 = p1 L2 +p2 L1+ p3 L12 + 1

L1 =p2 L1+ p3 L1 + 1

(这里实际上是 L1 =p1 ·1 + p2 (L1+1) + p3 (L1 +1) =p2 L1+ p3 L1 + 1,因为对L1情形,如果投了1就目的达到终止了)

L2 = p1 L2 + p3 L2 + 1

L3 = p1 L3 +p2 L3+ 1

其中p1,p2p3分别是掷出1,2和3的概率,即1/6,1/3,1/2。

于是求解这个方程,得到:

L1 = 6, L2 = 3, L3 = 2

L12 = 7, L13 = 13/2, L23 = 19/5

L123 = 219/30 = 7.3

平均掷7.3 次可出现这些面值各至少一次。

3. 方法三:指示器变量法

【另一解法】感谢4楼aaaxingruiaaa同学提供的答案(指示器变量法),整理如下:

定义随机变量Xn,其可能值为0或1,其值为1表示“前n次掷骰子,1,2,3没能都至少出现一次”的事件,其值为0表示这个事件没有发生,即“前n次掷骰子,1,2,3各至少出现一次”。

pn为“掷n次骰子,1,2,3没能都至少出现一次”的概率,所以显然pn = Pr{Xn=1},于是pn = 1·Pr{Xn=1} + 0·Pr{Xn=1} = E[Xn],即这个随机变量的数学期望。

令随机变量X表示1,2,3刚好全部出现过需要的投掷次数。可见题目要求的就是E[X]。

关键等式:X = Sigma(n=0 to Inf; Xn) (这里Sigma是求和号,求和范围是n从0到无穷大)

说明一下,等式两边都是随机变量,假设对于某个随机实例(例如,这里指一次具体的投掷序列),其对应事件是:“投了K次恰好1,2,3都出现了”,于是等式左边显然等于K;而等式右边,对于n < K,由于这些项的对应定义事件发生了(即1,2,3没能出现),所以他们的实例值是1,而对于n⩾K,则由于对应定义事件都没发生,实例值为0,可见这个和也是K。故两侧相等。(为了达到这个相等关系,可以看出需要把X0包含在内的必要性)

值得注意的是(但对于解这道题也可以不去注意,但注意一下有利于比较深入地理解),对n < 3,Xn显然恒为1。而对于n⩾3,这些随机变量不是独立的。他们的相关性是不容易求出的,唯一容易知道的是,当序列中一个项为0时,其后的项均为0。好在对于这题我们不需要担忧这个相关性。

由于数学期望的加性与随机变量的相关性无关(这是数学期望一个很令人高兴的性质),所以即便这样,E[X]也能容易求出:

E[X] = Sigma(n=0 to Inf; E[Xn]) = Sigma(n=0 to Inf; pn)

pn的比较直观的求法也由aaaxingruiaaa同学提供了,即所谓容斥原理。稍微解释一下,由于pn考虑的是n次投掷三者没有全部出现,于是就是其中两者出现或仅一者出现。假设单次投掷1,2和3出现的概率分别为:r1r2和r3。于是(r1+r2)n表征n次投掷只出现1或2的概率,这其中包括了出现全1和全2的情形,于是求pn可由这样的项求和并剔除重复计算的单面值情形,于是:

pn = (r1+r2)n+ (r1+r3)n+ (r2+r3)n-r1n-r2n-r3n,当n > 0; 而p0 = 1 (由定义;同时也可以检验看出,这个pn在n为1和2的时候都是1)

于是由等比级数(等比数列求和)公式:

E[X] = 1 + Sigma(n=1 to Inf; (r1+r2)n+ (r1+r3)n+ (r2+r3)n-r1n-r2n-r3n= 1 + (1 - r3) / r3 + (1 - r2) / r2 + (1 - r1) / r1 - r1 / (1 - r1) - r2 / (1 -r2) -r3 / (1 - r3) = 7.3

http://blog.csdn.net/quanben/article/details/6918209

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值