pytorch学习笔记六————使用神经网络拟合数据
上一章节我们用pytorch里面的工具实现了对数据进行线性回归,我们用的是线性模型,这次我们尝试使用神经网络模型对数据进行拟合,整个学习过程与前几章基本相同,就是在某些细节上面需要深究
pytorch有一个专门用于构建神经网络的子模块,称作为torch.nn
,它包含创建各种神经网络结构所需的构建块,在这里提供的模型都是nn.Module
的子模块,我们可以像调用一个函数一样调用他
线性模型
在pytroch里面的线性模型被称作为nn.Linear
它接受3个参数:输入特征的数量,输出特征的数量,以及线性模型是否包含偏置(默认为True)
下面代码构建了一个最简单的线性模型,并且打印了其权重和偏置
import torch.nn as nn
linear_model = nn.Linear(1, 1)
linear_model(t_un_val)
print(linear_model.weight)
print(linear_model.weight)
nn中所有模块都被编写为可以同时为多个输入产生输出,这里的输入输出需要规定下格式,输入的格式是一个
B
×
N
i
n
B\times N_{in}
B×Nin的输入张量,B是批次大小,即一次处理B组数据;
N
i
n
N_{in}
Nin为输入特征的数量.相应的,输出的格式为
B
×
N
o
u
t
B\times N_{out}
B×Nout
对于我们之前的温度数据,我们需要调整输入格式,在这里B为数据的数量,
N
i
n
N_{in}
Nin为1,这通过unsqueeze()
可以很容易的完成
t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c).unsqueeze(1)
t_u = torch.tensor(t_u).unsqueeze(1)
t_u.shape
如此,我们用nn.Linear(1,1)
代替手动构造模型吗然后将线性模型参数传递给优化器
linear_model = nn.Linear(1, 1)
optimizer = optim.SGD(
linear_model.parameters(),
lr=1e-2)
所以我们可以用parameters()
来访问模型拥有的参数列表
linear_model.parameters()
# <generator object Module.parameters at 0x7f94b4a8a750>
list(linear_model.parameters())
# [Parameter containing:
# tensor([[0.7398]], requires_grad=True), Parameter containing:
# tensor([0.7974], requires_grad=True)]
因此我们可以实现整个模型,其中损失函数我们用nn.MSELoss()
代替,这是官方里的均方误差损失函数
def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val,
t_c_train, t_c_val):
for epoch in range(1, n_epochs + 1):
t_p_train = model(t_u_train)
loss_train = loss_fn(t_p_train, t_c_train)
t_p_val = model(t_u_val)
loss_val = loss_fn(t_p_val, t_c_val)
optimizer.zero_grad()
loss_train.backward()
optimizer.step()
if epoch == 1 or epoch % 1000 == 0:
print(f"Epoch {epoch}, Training loss {loss_train.item():.4f},"
f" Validation loss {loss_val.item():.4f}")
training_loop(
n_epochs = 3000,
optimizer = optimizer,
model = linear_model,
loss_fn = loss_fn,
t_u_train = t_un_train,
t_u_val = t_un_val,
t_c_train = t_c_train,
t_c_val = t_c_val)
神经网络模型
相比较于上一个模型实现,我们只需要将线性模型替换成神经网络模型即可
一个最简单的神经网络由三个部分组成:一个线性模块,然后一个激活函数,接着又是一个线性模块
nn提供了一种通过nn.Sequential
容器来连接模型的方式
seq_model = nn.Sequential(
nn.Linear(1, 13),
nn.Tanh(),
nn.Linear(13, 1))
检查参数的方法,当检查几个子模块组成的模型的参数时,通过名称识别参数时很方便的,named_parameters()
方法可以实现该功能
print([param.shape for param in seq_model.parameters()])
for name, param in seq_model.named_parameters():
print(name, param.shape)
可以看出sequential中模块的名称就是在模块中出现的序号,它也接受orderedDict,可以用它来命名传递给sequential里的模块,我们也可以通过将子模块作为属性来访问一个特定的参数
from collections import OrderedDict
seq_model = nn.Sequential(OrderedDict([
('hidden_linear', nn.Linear(1, 8)),
('hidden_activation', nn.Tanh()),
('output_linear', nn.Linear(8, 1))
]))
print(seq_model.output_linear.bias)
因此将training_loop
里的模型参数改成神经网络模型即完成了一个最简单的数据模型
同样我们将其打印出来看其效果,总的来说做的不错
from matplotlib import pyplot as plt
t_range = torch.arange(20., 90.).unsqueeze(1)
fig = plt.figure(dpi=600)
plt.xlabel("Fahrenheit")
plt.ylabel("Celsius")
plt.plot(t_u.numpy(), t_c.numpy(), 'o')
plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')
plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')