BZOJ1800

BZOJ1800
  • 题目

    BZOJ1800

  • 分析

    采用断环成链的处理方式,枚举链的起点,再枚举三个断点 i , j , k i,j,k i,j,k ,满足 s u m [ i ] − s u m [ s − 1 ] = = s u m [ k ] − s u m [ j ] & & s [ j ] − s u m [ i ] = = s u m [ s + n − 1 ] − s u m [ k ] sum[i] - sum[s - 1] == sum[k] - sum[j] \&\& s[j] - sum[i] == sum[s + n - 1] - sum[k] sum[i]sum[s1]==sum[k]sum[j]&&s[j]sum[i]==sum[s+n1]sum[k] 即可。

    注意计算是会重复处理矩形的四条边,所以最后答案要 a n s 4 \frac{ans}{4} 4ans

    时间复杂度 : O ( n 4 ) O(n ^ 4) O(n4)

  • 代码

    int a[55];
    int sum[55];
    int main ()
    {
    	//freopen("input.in", "r", stdin);
    	//freopen("test.out", "w", stdout);
    	int n;
    	read(n);
    	for (int i = 1; i <= n; i++) read(a[i]);
    	for (int i = 1; i <= n; i++)
    		a[n + i] = a[i];
    	for (int i = 1; i <= 2 * n; i++)
    		sum[i] = sum[i - 1] + a[i];
    	int ans = 0;
    	for (int s = 1; s <= n; s++)
    	{
    		for (int i = s; i <= s + n - 1; i++)
    		{
    			for (int j = i + 1; j <= s + n - 1; j++)
    				for (int k = j + 1; k <= s + n - 1; k ++) {
    					if ((sum[i] - sum[s - 1] == sum[k] - sum[j]) && (sum[j] - sum[i] == sum[s + n - 1] - sum[k]))
    					{
    						ans++;
    					}
    				}
    		}
    	}
    	cout << ans / 4 << endl;
    	return 0 ;
    }
    
  • 题型

    前缀和 + 暴力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值