欧拉定理及其推论

欧拉定理及其推论
  • 欧拉定理

    • 内容:若正整数 a , n a,n a,n 互质,则对于 a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n)} \equiv 1 \pmod n aφ(n)1(modn) ,其中 φ ( n ) \varphi(n) φ(n) 为欧拉函数。
    • 证明:(略
  • 欧拉定理推论

    • 内容:若正整数 a , n a,n a,n 互质,则对于任意正整数 b b b ,有 a b ≡ a b   m o d   φ ( n ) m o d    n a^{b} \equiv a^{b \,mod \,\varphi(n)} \mod n ababmodφ(n)modn

    • 证明:
      设 b = q × φ ( n ) + r , 其 中 0 ≤ r ≤ φ ( n ) , 即 r = b m o d    φ ( n ) a b ≡ a q × φ ( n ) + r ≡ ( a φ ( n ) ) q × a r ≡ 1 q × a r ≡ a r ≡ a b m o d    φ ( n ) ( m o d n ) \begin{aligned} & 设 b = q \times\varphi(n) + r,其中0\leq r \leq \varphi(n),即 r = b \mod \varphi(n)\\ & a ^ b \equiv a ^{q\times\varphi(n) + r}\equiv (a ^ {\varphi(n)})^q \times a^r \equiv 1^q \times a ^ r \equiv a ^ r \equiv a ^ {b \mod \varphi(n)} \pmod n \end{aligned} b=q×φ(n)+r0rφ(n),r=bmodφ(n)abaq×φ(n)+r(aφ(n))q×ar1q×ararabmodφ(n)(modn)

  • 广义上的欧拉定理推论:

    • 内容:
      a b ≡ a b m o d &ThinSpace;&ThinSpace; φ ( n ) + φ ( n ) ( m o d n ) a ^ b \equiv a ^ {b \mod \varphi(n) + \varphi(n)} \pmod n ababmodφ(n)+φ(n)(modn) a , n a,n a,n 不一定互质且 b &gt; φ ( n ) b &gt; \varphi(n) b>φ(n) b &lt; = φ ( n ) b &lt;= \varphi(n) b<=φ(n) a b ≡ a b ( m o d n ) a ^ b \equiv a ^ b \pmod n abab(modn)

    • 证明:可寻找 a b m o d &ThinSpace;&ThinSpace; n a^b \mod n abmodn 的指数循环节证明。

  • 引理:若正整数 a , n a,n a,n 互质,则满足 a x ≡ 1 ( m o d n ) a^x \equiv 1 \pmod n ax1(modn) 的最小正整数 x 0 x_0 x0 φ ( n ) \varphi(n) φ(n) 的约数。

    • 证明:
      反 证 法 : 假 设 满 足 a x ≡ 1 ( m o d n ) 的 最 小 正 整 数 x 0 不 能 整 除 φ ( n ) 设 φ ( n ) = q × x 0 + r ( 0 &lt; r &lt; x 0 ) 。 因 为 a x 0 ≡ 1 ( m o d n ) , 所 以 a q x 0 ≡ 1 ( m o d n ) 根 据 欧 拉 定 理 , 有 a φ ( n ) ≡ 1 ( m o d n ) , 所 以 a r ≡ 1 ( m o d n ) 。 因 为 r &lt; x 0 , 这 与 x 0 最 小 矛 盾 , 所 以 原 命 题 成 立 。 \begin{aligned} &amp; 反证法:假设满足 a ^ x \equiv 1 \pmod n 的最小正整数 x_0 不能整除 \varphi(n) \\ &amp; 设 \varphi(n) = q \times x_0 + r (0 &lt; r &lt; x_0)。因为 a ^{x_0} \equiv 1 \pmod n,所以 a ^ {qx_0} \equiv 1 \pmod n \\ &amp; 根据欧拉定理,有 a ^ {\varphi(n)} \equiv 1 \pmod n,所以 a ^ r \equiv 1 \pmod n。因为 r &lt; x_0,这与 x_0 最小矛盾,所以原命题成立。 \end{aligned} ax1(modn)x0φ(n)φ(n)=q×x0+r(0<r<x0)ax01(modn),aqx01(modn)aφ(n)1(modn),ar1(modn)r<x0,x0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值