ray.rllib 入门实践-2:配置算法

前言:

        ray.rllib的算法配置方式有多种,网上的不同教程各不相同,有的互不兼容,本文汇总罗列了多种算法配置方式,给出推荐,并在最后给出可运行代码。

环境配置:

        torch==2.5.1

        ray==2.10.0

        ray[rllib]==2.10.0

        ray[tune]==2.10.0

        ray[serve]==2.10.0

        numpy==1.23.0

        python==3.9.18

四种配置方式

方法1

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print

## 配置算法
config = PPOConfig()\
        .rollouts(num_rollout_workers = 2)\
        .resources(num_gpus=0)\
        .environment(env="CartPole-v1")
algo = config.build()

缺点:不能在每行配置后面添加注释, 否则报错。 

方法2

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print

## 配置算法
algo = (
    PPOConfig()
    .rollouts(num_rollout_workers=1)  ## 注释
    .resources(num_gpus=0)
    .environment(env="CartPole-v1")
    .build()
)

用"()"把配置过程括起来,每行后面可以添加注释,不报错。官方教程使用的该种方式。 

方式3:推荐

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print

## 配置算法2
storage_path = "F:/codes/RLlib_study/ray_results/build_method_3"
config = PPOConfig()
config = config.rollouts(num_rollout_workers=2)
config = config.resources(num_gpus=0,num_cpus_per_worker=1,num_gpus_per_worker=0)
config = config.environment(env="CartPole-v1",env_config={})
config.output = storage_path  ## 设置过程文件的存储路径
algo = config.build()

优点:每一行是一个完整的命令, 后面可以添加注释,可以直接给config类的成员变量赋值。比如上面代码示例中的:config.output = storage_path , 直接配置存储路径,而不用去寻找output变量属于哪一个PPOConfig子模块。 

方式4:

import os 
from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print

storage_path = "F:/codes/RLlib_study/ray_results/build_method_4"
os.makedirs(storage_path, exist_ok=True)
config = {
    "env":"CartPole-v1",
    "env_config":{}, ## 用于传递给env的信息
    "frame_work":"torch",
    "num_gpus":0,
    "num_workers":2,
    "num_cpus_per_worker":1,
    "num_envs_per_worker":1,
    "num_gpus_per_worker":0,
    "lr":0.001,
    "model":{
        "fcnet_hiddens":[256,256,64],
        "fcnet_activation":"tanh",
        "custom_model_config":{},
        "custom_model":None},
    "output":storage_path
}
algo = PPO(config=config) ## 构建算法

        这种方式在ray1.4版本之前使用较多,是唯一的配置方式。随着ray的更新迭代,用class封装了configDict, 即上面的方法1,方法2,方法3所用的方式。用 PPOConfig 进行配置后,最终也是转成方法4中的字典传递给算法使用, 但是相比方法4的字典, 方法1、2、3可以在编程时有语法提示,告诉你有哪几个成员变量或成员函数可以用于设计config。 

        现在仍旧有很多人用方法4配置rllib算法,我认为这是从老版本传递下来的一种习惯,新上手的人建议使用 AlgorithmConfig的方式配置算法。

汇总代码:

from ray.rllib.algorithms.ppo import PPO,PPOConfig
from ray.tune.logger import pretty_print
import os 

## 配置算法1
# config = PPOConfig()\
#         .rollouts(num_rollout_workers = 2)\
#         .resources(num_gpus=0)\
#         .environment(env="CartPole-v1")
# algo = config.build()

# ## 配置算法2
# algo = (
#     PPOConfig()
#     .rollouts(num_rollout_workers=1) 
#     .resources(num_gpus=0)
#     .environment(env="CartPole-v1")
#     .build()
# )

# ## 配置算法3
# storage_path = "F:/codes/RLlib_study/ray_results/build_method_4"
# os.makedirs(storage_path, exist_ok=True)
# config = PPOConfig()
# config = config.rollouts(num_rollout_workers=1) 
# config = config.resources(num_gpus=0)
# config = config.environment(env="CartPole-v1")
# config.output = storage_path
# algo = config.build()

## 配置算法 4
storage_path = "F:/codes/RLlib_study/ray_results/build_method_4"
os.makedirs(storage_path, exist_ok=True)
config = {
    "env":"CartPole-v1",
    "env_config":{}, ## 用于传递给env的信息
    "frame_work":"torch",
    "num_gpus":0,
    "num_workers":2,
    "num_cpus_per_worker":1,
    "num_envs_per_worker":1,
    "num_gpus_per_worker":0,
    "lr":0.001,
    "model":{
        "fcnet_hiddens":[256,256,64],
        "fcnet_activation":"tanh",
        "custom_model_config":{},
        "custom_model":None},
    "output":storage_path
}
algo = PPO(config=config) ## 构建算法
    


## 训练模型. 每个 iter 里重复执行多次 episode. 直到满足条件, 比如新增采样量达到一定体量。
for i in range(2):
    result = algo.train()
    print(pretty_print(result))

## 保存模型
checkpoint_dir = algo.save().checkpoint.path   
## algo.save()用于实现存储checkpoint, 后面跟着的.checkpoint.path用于返回存储路径
print(f"Checkpoint saved in directory {checkpoint_dir}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值