冗余连接
力扣传送门
在本问题中, 树指的是一个连通且无环的无向图。
输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, …, N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。
结果图是一个以边组成的二维数组。每一个边的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。
返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v。
示例 1:
输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
示例 2:
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
注意:
输入的二维数组大小在 3 到 1000。
二维数组中的整数在1到N之间,其中N是输入数组的大小。
package leetcode;
import org.testng.annotations.Test;
/**
* Created by fangjiejie on 2020/3/31.
*/
public class UnionFind {
int father[];
public int getfather(int x) {//寻找根节点
int a = x;
while (x != father[x]) {
x = father[x];
}
father[a] = x;//路径压缩
return x;
}
public boolean union(int x, int y) {
int f1 = getfather(x);
int f2 = getfather(y);
if (f1 == f2) return false;
father[f1] = f2;
return true;
}
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;//n条边
father = new int[n * 2];//最多n*2个node;
for (int i = 0; i < n; i++) {//初始化
father[i] = i;
}
for (int i = 0; i < n; i++) {
if (!union(edges[i][0], edges[i][1])) return edges[i];
}
return new int[0];
}
@Test
public void test() {
int edges[][] = {{1, 2}, {1, 3}, {2, 3}};
int b[] = findRedundantConnection(edges);
for (int elem : b) {
System.out.println(elem);
}
}
}