并查集---冗余连接

冗余连接
力扣传送门
在本问题中, 树指的是一个连通且无环的无向图。

输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, …, N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。

结果图是一个以边组成的二维数组。每一个边的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。

返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v。

示例 1:

输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:

示例 2:

输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:

注意:

输入的二维数组大小在 3 到 1000。
二维数组中的整数在1到N之间,其中N是输入数组的大小。

package leetcode;

import org.testng.annotations.Test;

/**
 * Created by fangjiejie on 2020/3/31.
 */
public class UnionFind {
    int father[];

    public int getfather(int x) {//寻找根节点
        int a = x;
        while (x != father[x]) {
            x = father[x];
        }
        father[a] = x;//路径压缩
        return x;
    }

    public boolean union(int x, int y) {
        int f1 = getfather(x);
        int f2 = getfather(y);
        if (f1 == f2) return false;
        father[f1] = f2;
        return true;
    }

    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;//n条边
        father = new int[n * 2];//最多n*2个node;
        for (int i = 0; i < n; i++) {//初始化
            father[i] = i;
        }
        for (int i = 0; i < n; i++) {
            if (!union(edges[i][0], edges[i][1])) return edges[i];
        }
        return new int[0];
    }

    @Test
    public void test() {
        int edges[][] = {{1, 2}, {1, 3}, {2, 3}};
        int b[] = findRedundantConnection(edges);
        for (int elem : b) {
            System.out.println(elem);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值